Commit before alph-ordering grammar.

This commit is contained in:
Simon Brooke 2016-01-02 14:24:40 +00:00
parent 13e87f8f7a
commit b23aae26ce
2 changed files with 446 additions and 27 deletions

View file

@ -29,7 +29,8 @@
DISJUNCT-EXPRESSION := IN SPACE DISJUNCT-VALUE; DISJUNCT-EXPRESSION := IN SPACE DISJUNCT-VALUE;
RANGE-EXPRESSION := BETWEEN SPACE NUMERIC-EXPRESSION SPACE AND SPACE NUMERIC-EXPRESSION; RANGE-EXPRESSION := BETWEEN SPACE NUMERIC-EXPRESSION SPACE AND SPACE NUMERIC-EXPRESSION;
NUMERIC-EXPRESSION := VALUE | VALUE SPACE OPERATOR SPACE NUMERIC-EXPRESSION; NUMERIC-EXPRESSION := VALUE | VALUE SPACE OPERATOR SPACE NUMERIC-EXPRESSION;
QUALIFIER := COMPARATIVE SPACE THAN | EQUIVALENCE | IS SPACE QUALIFIER; NEGATED-QUALIFIER := QUALIFIER SPACE NOT | NOT SPACE QUALIFIER;
QUALIFIER := NEGATED-QUALIFIER | IS COMPARATIVE SPACE THAN | EQUIVALENCE | IS SPACE QUALIFIER;
QUANTIFIER := NUMBER | SOME | NONE | ALL; QUANTIFIER := NUMBER | SOME | NONE | ALL;
EQUIVALENCE := IS SPACE EQUAL | EQUAL | IS ; EQUIVALENCE := IS SPACE EQUAL | EQUAL | IS ;
COMPARATIVE := MORE | LESS; COMPARATIVE := MORE | LESS;
@ -38,6 +39,7 @@
THEN := 'then'; THEN := 'then';
THAN := 'than'; THAN := 'than';
OR := 'or'; OR := 'or';
NOT := 'not';
AND := 'and'; AND := 'and';
SOME := 'some'; SOME := 'some';
NONE := 'no'; NONE := 'no';
@ -132,7 +134,10 @@
qualifier (generate (nth tree 2)) qualifier (generate (nth tree 2))
expression (generate (nth tree 3))] expression (generate (nth tree 3))]
(case expression-type (case expression-type
:DISJUNCT-EXPRESSION (list 'let ['value (list property 'cell)] (list 'some (list 'fn ['i] '(= i value)) (list 'quote expression))) :DISJUNCT-EXPRESSION (let [e (list 'some (list 'fn ['i] '(= i value)) (list 'quote expression))]
(list 'let ['value (list property 'cell)]
(if (= qualifier '=) e
(list 'not e))))
:RANGE-EXPRESSION (generate-ranged-property-condition tree property expression) :RANGE-EXPRESSION (generate-ranged-property-condition tree property expression)
(list qualifier (list property 'cell) expression))))) (list qualifier (list property 'cell) expression)))))
@ -173,26 +178,32 @@
(if (if
(coll? tree) (coll? tree)
(case (first tree) (case (first tree)
:RULE (generate-rule tree) :ACTIONS (generate-multiple-actions tree)
:CONDITIONS (generate-conditions tree) :COMPARATIVE (generate (second tree))
:CONDITION (generate-condition tree) :CONDITION (generate-condition tree)
;; :NEIGHBOURS-CONDITION (generate-neighbours-condition tree) :CONDITIONS (generate-conditions tree)
:DISJUNCT-CONDITION (generate-disjunct-condition tree)
:CONJUNCT-CONDITION (generate-conjunct-condition tree) :CONJUNCT-CONDITION (generate-conjunct-condition tree)
:DISJUNCT-CONDITION (generate-disjunct-condition tree)
:PROPERTY-CONDITION (generate-property-condition tree) :PROPERTY-CONDITION (generate-property-condition tree)
:DISJUNCT-EXPRESSION (generate (nth tree 2)) :DISJUNCT-EXPRESSION (generate (nth tree 2))
:NUMERIC-EXPRESSION (generate-numeric-expression tree)
:DISJUNCT-VALUE (generate-disjunct-value tree) :DISJUNCT-VALUE (generate-disjunct-value tree)
:SIMPLE-ACTION (generate-simple-action tree)
:ACTIONS (generate-multiple-actions tree)
:SYMBOL (keyword (second tree))
:NUMBER (read-string (second tree))
:EQUIVALENCE '= :EQUIVALENCE '=
:MORE '> :EXPRESSION (generate (second tree))
:LESS '< :LESS '<
:COMPARATIVE (generate (second tree)) :MORE '>
;; :EXPRESSION (generate-expression tree) :NEGATED-QUALIFIER (case (generate (second tree))
;; :SIMPLE-EXPRESSION = 'not=
> '<
< '>)
;; :NEIGHBOURS-CONDITION (generate-neighbours-condition tree)
:NUMERIC-EXPRESSION (generate-numeric-expression tree)
:NUMBER (read-string (second tree))
:PROPERTY (list (generate (second tree)) 'cell) ;; dubious - may not be right
:QUALIFIER (generate (second tree))
:RULE (generate-rule tree)
:SIMPLE-ACTION (generate-simple-action tree)
:SYMBOL (keyword (second tree))
:VALUE (generate (second tree))
(map generate tree)) (map generate tree))
tree)) tree))
@ -229,22 +240,24 @@
(if (if
(coll? tree) (coll? tree)
(case (first tree) (case (first tree)
:ACTION (simplify-second-of-two tree)
:ACTIONS (simplify-second-of-two tree)
:COMPARATIVE (simplify-second-of-two tree)
:CONDITION (simplify-second-of-two tree)
:CONDITIONS (simplify-second-of-two tree)
:EXPRESSION (simplify-second-of-two tree)
:QUANTIFIER (simplify-second-of-two tree)
:NOT nil
:PROPERTY (simplify-second-of-two tree)
:SPACE nil :SPACE nil
:THEN nil :THEN nil
:QUALIFIER (simplify-qualifier tree) ;; :QUALIFIER (simplify-qualifier tree)
:CONDITIONS (simplify-second-of-two tree)
:CONDITION (simplify-second-of-two tree)
:EXPRESSION (simplify-second-of-two tree)
:COMPARATIVE (simplify-second-of-two tree)
:QUANTIFIER (simplify-second-of-two tree)
:VALUE (simplify-second-of-two tree) :VALUE (simplify-second-of-two tree)
:PROPERTY (simplify-second-of-two tree)
:ACTIONS (simplify-second-of-two tree)
:ACTION (simplify-second-of-two tree)
(remove nil? (map simplify tree))) (remove nil? (map simplify tree)))
tree)) tree))
(def parse-rule (def parse-rule
"Parse the argument, assumed to be a string in the correct syntax, and return a parse tree."
(insta/parser grammar)) (insta/parser grammar))
(defn explain-parse-error-reason (defn explain-parse-error-reason
@ -277,7 +290,7 @@
[rule] [rule]
(assert (string? rule)) (assert (string? rule))
(let [tree (simplify (parse-rule rule))] (let [tree (simplify (parse-rule rule))]
(if (rule? rule) (generate tree) (if (rule? tree) (eval (generate tree))
(throw-parse-exception tree)))) (throw-parse-exception tree))))

View file

@ -95,7 +95,413 @@
"Exception thrown on attempt to set 'y'") "Exception thrown on attempt to set 'y'")
)) ))
(deftest compilation-tests (deftest correctness-tests
(testing "Full compilation of rules" ;; these are, in so far as possible, the same as the correctness-tests in core-tests - i.e., the two compilers
;; compile the same language.
(testing "Simplest possible rule"
(let [afn (compile-rule "if state is new then state should be grassland")]
(is (= (apply afn (list {:state :new} nil))
{:state :grassland})
"Rule fires when condition is met")
(is (nil? (apply afn (list {:state :forest} nil))))
"Rule doesn't fire when condition isn't met"))
(testing "Condition conjunction rule"
(let [afn (compile-rule "if state is new and altitude is 0 then state should be water")]
(is (= (apply afn (list {:state :new :altitude 0} nil))
{:state :water :altitude 0})
"Rule fires when conditions are met")
(is (nil? (apply afn (list {:state :new :altitude 5} nil)))
"Rule does not fire: second condition not met")
(is (nil? (apply afn (list {:state :forest :altitude 0} nil)))
"Rule does not fire: first condition not met")))
(testing "Condition disjunction rule"
(let [afn (compile-rule "if state is new or state is waste then state should be grassland")]
(is (= (apply afn (list {:state :new} nil))
{:state :grassland})
"Rule fires: first condition met")
(is (= (apply afn (list {:state :waste} nil))
{:state :grassland})
"Rule fires: second condition met")
(is (nil? (apply afn (list {:state :forest} nil)))
"Rule does not fire: neither condition met")))
(testing "Simple negation rule"
(let [afn (compile-rule "if state is not new then state should be grassland")]
(is (nil? (apply afn (list {:state :new} nil)))
"Rule doesn't fire when condition isn't met")
(is (= (apply afn (list {:state :forest} nil))
{:state :grassland})
"Rule fires when condition is met")))
(testing "Can't set x or y properties"
(is (thrown-with-msg?
Exception #"The properties 'x' and 'y' of a cell are reserved and should not be set in rule actions"
(compile-rule "if state is new then x should be 0"))
"Exception thrown on attempt to set 'x'")
(is (thrown-with-msg?
Exception #"The properties 'x' and 'y' of a cell are reserved and should not be set in rule actions"
(compile-rule "if state is new then y should be 0"))
"Exception thrown on attempt to set 'y'"))
(testing "Simple list membership rule"
(let [afn (compile-rule "if state is in heath or scrub or forest then state should be climax")]
(is (= (apply afn (list {:state :heath} nil))
{:state :climax})
"Rule fires when condition is met")
(is (= (apply afn (list {:state :scrub} nil))
{:state :climax})
"Rule fires when condition is met")
(is (= (apply afn (list {:state :forest} nil))
{:state :climax})
"Rule fires when condition is met")
(is (nil? (apply afn (list {:state :grassland} nil)))
"Rule does not fire when condition is not met")))
(testing "Negated list membership rule"
(let [afn (compile-rule "if state is not in heath or scrub or forest then state should be climax")]
(is (nil? (apply afn (list {:state :heath} nil)))
"Rule does not fire when condition is not met")
(is (nil? (apply afn (list {:state :scrub} nil)))
"Rule does not fire when condition is not met")
(is (nil? (apply afn (list {:state :forest} nil)))
"Rule does not fire when condition is not met")
(is (= (apply afn (list {:state :grassland} nil))
{:state :climax})
"Rule fires when condition is met")))
(testing "Property is more than numeric-value"
(let [afn (compile-rule "if altitude is more than 200 then state should be snow")]
(is (= (apply afn (list {:altitude 201} nil))
{:state :snow :altitude 201})
"Rule fires when condition is met")
(is (nil? (apply afn (list {:altitude 200} nil)))
"Rule does not fire when condition is not met")))
(testing "Property is more than property"
(let [afn (compile-rule "if wolves are more than deer then deer should be 0")]
(is (= (apply afn (list {:deer 2 :wolves 3} nil))
{:deer 0 :wolves 3})
"Rule fires when condition is met")
(is (nil? (apply afn (list {:deer 3 :wolves 2} nil)))
"Rule does not fire when condition is not met")))
(testing "Property is less than numeric-value"
(let [afn (compile-rule "if altitude is less than 10 then state should be water")]
(is (= (apply afn (list {:altitude 9} nil))
{:state :water :altitude 9})
"Rule fires when condition is met")
(is (nil? (apply afn (list {:altitude 10} nil)))
"Rule does not fire when condition is not met")))
(testing "Property is less than property"
(let [afn (compile-rule "if wolves are less than deer then deer should be deer - wolves")]
(is (= (apply afn (list {:deer 3 :wolves 2} nil))
{:deer 1 :wolves 2})
"Rule fires when condition is met")
(is (nil? (apply afn (list {:deer 2 :wolves 3} nil)))
"Rule does not fire when condition is not met")))
(testing "Number neighbours have property equal to value"
(let [afn (compile-rule "if 3 neighbours have state equal to new then state should be water")
world (make-world 3 3)]
(is (= (apply afn (list {:x 0 :y 0} world))
{:state :water :x 0 :y 0})
"Rule fires when condition is met (in a new world all cells are new, corner cell has three neighbours)")
(is (nil? (apply afn (list {:x 1 :y 1} world)))
"Middle cell has eight neighbours, so rule does not fire."))
(let [afn (compile-rule "if 3 neighbours are new then state should be water")
world (make-world 3 3)]
;; 'are new' should be the same as 'have state equal to new'
(is (= (apply afn (list {:x 0 :y 0} world))
{:state :water :x 0 :y 0})
"Rule fires when condition is met (in a new world all cells are new, corner cell has three neighbours)")
(is (nil? (apply afn (list {:x 1 :y 1} world)))
"Middle cell has eight neighbours, so rule does not fire.")))
(testing "Number neighbours have property more than numeric-value"
(let [afn (compile-rule "if 3 neighbours have altitude more than 10 then state should be beach")
world (transform-world
(make-world 3 3)
(list (compile-rule "if x is 2 then altitude should be 11")
(compile-rule "if x is less than 2 then altitude should be 0")))]
(is (= (:state (apply afn (list {:x 1 :y 1} world))) :beach)
"Rule fires when condition is met (strip of altitude 11 down right hand side)")
(is (nil? (apply afn (list {:x 2 :y 1} world)))
"Middle cell of the strip has only two high neighbours, so rule should not fire.")))
(testing "Number neighbours have property less than numeric-value"
(let [afn (compile-rule "if 5 neighbours have altitude less than 10 then state should be beach")
world (transform-world
(make-world 3 3)
(list (compile-rule "if x is 2 then altitude should be 11")
(compile-rule "if x is less than 2 then altitude should be 0")))]
(is (= (:state (apply afn (list {:x 1 :y 1} world))) :beach)
"Rule fires when condition is met (strip of altitude 11 down right hand side)")
(is (nil? (apply afn (list {:x 2 :y 1} world)))
"Middle cell of the strip has two high neighbours, so rule should not fire.")))
(testing "More than number neighbours have property equal to numeric-value"
(let [afn (compile-rule "if more than 2 neighbours have altitude equal to 11 then state should be beach")
world (transform-world
(make-world 3 3)
(list (compile-rule "if x is 2 then altitude should be 11")
(compile-rule "if x is less than 2 then altitude should be 0")))]
(is (= (:state (apply afn (list {:x 1 :y 1} world))) :beach)
"Rule fires when condition is met (strip of altitude 11 down right hand side)")
(is (nil? (apply afn (list {:x 2 :y 1} world)))
"Middle cell of the strip has only two high neighbours, so rule should not fire.")))
(testing "More than number neighbours have property equal to symbolic-value"
(let [afn (compile-rule "if more than 2 neighbours have state equal to grassland then state should be beach")
world (transform-world
(make-world 3 3)
(list (compile-rule "if x is 2 then altitude should be 11 and state should be grassland")
(compile-rule "if x is less than 2 then altitude should be 0 and state should be water")))]
(is (= (:state (apply afn (list {:x 1 :y 1} world))) :beach)
"Rule fires when condition is met (strip of altitude 11 down right hand side)")
(is (nil? (apply afn (list {:x 2 :y 1} world)))
"Middle cell of the strip has only two high neighbours, so rule should not fire."))
(let [afn (compile-rule "if more than 2 neighbours are grassland then state should be beach")
;; 'are grassland' should mean the same as 'have state equal to grassland'.
world (transform-world
(make-world 3 3)
(list (compile-rule "if x is 2 then altitude should be 11 and state should be grassland")
(compile-rule "if x is less than 2 then altitude should be 0 and state should be water")))]
(is (= (:state (apply afn (list {:x 1 :y 1} world))) :beach)
"Rule fires when condition is met (strip of altitude 11 down right hand side)")
(is (nil? (apply afn (list {:x 2 :y 1} world)))
"Middle cell of the strip has only two high neighbours, so rule should not fire."))
)
(testing "Fewer than number neighbours have property equal to numeric-value"
(let [afn (compile-rule "if fewer than 3 neighbours have altitude equal to 11 then state should be beach")
world (transform-world
(make-world 3 3)
(list (compile-rule "if x is 2 then altitude should be 11")
(compile-rule "if x is less than 2 then altitude should be 0")))]
(is (= (:state (apply afn (list {:x 2 :y 1} world))) :beach)
"Rule fires when condition is met (Middle cell of the strip has only two high neighbours)")
(is (nil? (apply afn (list {:x 1 :y 1} world)))
"Middle cell of world has three high neighbours, so rule should not fire.")))
(testing "Fewer than number neighbours have property equal to symbolic-value"
(let [afn (compile-rule "if fewer than 3 neighbours have state equal to grassland then state should be beach")
world (transform-world
(make-world 3 3)
(list (compile-rule "if x is 2 then altitude should be 11 and state should be grassland")
(compile-rule "if x is less than 2 then altitude should be 0 and state should be water")))]
(is (= (:state (apply afn (list {:x 2 :y 1} world))) :beach)
"Rule fires when condition is met (Middle cell of the strip has only two high neighbours)")
(is (nil? (apply afn (list {:x 1 :y 1} world)))
"Middle cell of world has three high neighbours, so rule should not fire.")))
;; some neighbours have property equal to value
(testing "Some neighbours have property equal to numeric-value"
(let [afn (compile-rule "if some neighbours have altitude equal to 11 then state should be beach")
world (transform-world
(make-world 3 3)
(list (compile-rule "if x is 2 then altitude should be 11")
(compile-rule "if x is less than 2 then altitude should be 0")))]
(is (= (:state (apply afn (list {:x 1 :y 1} world))) :beach)
"Rule fires when condition is met (strip of altitude 11 down right hand side)")
(is (nil? (apply afn (list {:x 0 :y 1} world)))
"Left hand side of world has no high neighbours, so rule should not fire.")))
(testing "Some neighbours have property equal to symbolic-value"
(let [afn (compile-rule "if some neighbours have state equal to grassland then state should be beach")
world (transform-world
(make-world 3 3)
(list (compile-rule "if x is 2 then altitude should be 11 and state should be grassland")
(compile-rule "if x is less than 2 then altitude should be 0 and state should be water")))]
(is (= (:state (apply afn (list {:x 1 :y 1} world))) :beach)
"Rule fires when condition is met (strip of altitude 11 down right hand side)")
(is (nil? (apply afn (list {:x 0 :y 1} world)))
"Left hand side of world has no high neighbours, so rule should not fire.")))
;; more than number neighbours have property more than numeric-value
(testing "More than number neighbours have property more than symbolic-value"
(let [afn (compile-rule "if more than 2 neighbours have altitude more than 10 then state should be beach")
world (transform-world
(make-world 3 3)
(list (compile-rule "if x is 2 then altitude should be 11 and state should be grassland")
(compile-rule "if x is less than 2 then altitude should be 0 and state should be water")))]
(is (= (:state (apply afn (list {:x 1 :y 1} world))) :beach)
"Rule fires when condition is met (strip of altitude 11 down right hand side)")
(is (nil? (apply afn (list {:x 2 :y 1} world)))
"Middle cell of the strip has only two high neighbours, so rule should not fire.")))
;; fewer than number neighbours have property more than numeric-value
(testing "Fewer than number neighbours have property more than numeric-value"
(let [afn (compile-rule "if fewer than 3 neighbours have altitude more than 10 then state should be beach")
world (transform-world
(make-world 3 3)
(list (compile-rule "if x is 2 then altitude should be 11")
(compile-rule "if x is less than 2 then altitude should be 0")))]
(is (= (:state (apply afn (list {:x 2 :y 1} world))) :beach)
"Rule fires when condition is met (Middle cell of the strip has only two high neighbours)")
(is (nil? (apply afn (list {:x 1 :y 1} world)))
"Middle cell of world has three high neighbours, so rule should not fire.")))
;; some neighbours have property more than numeric-value
(testing "Some neighbours have property more than numeric-value"
(let [afn (compile-rule "if some neighbours have altitude more than 10 then state should be beach")
world (transform-world
(make-world 3 3)
(list (compile-rule "if x is 2 then altitude should be 11")
(compile-rule "if x is less than 2 then altitude should be 0")))]
(is (= (:state (apply afn (list {:x 1 :y 1} world))) :beach)
"Rule fires when condition is met (strip of altitude 11 down right hand side)")
(is (nil? (apply afn (list {:x 0 :y 1} world)))
"Left hand side of world has no high neighbours, so rule should not fire.")))
;; more than number neighbours have property less than numeric-value
(testing "More than number neighbours have property less than numeric-value"
(let [afn (compile-rule "if more than 4 neighbours have altitude less than 10 then state should be beach")
world (transform-world
(make-world 3 3)
(list (compile-rule "if x is 2 then altitude should be 11")
(compile-rule "if x is less than 2 then altitude should be 0")))]
(is (= (:state (apply afn (list {:x 1 :y 1} world))) :beach)
"Rule fires when condition is met (strip of altitude 11 down right hand side)")
(is (nil? (apply afn (list {:x 2 :y 1} world)))
"Middle cell of the strip has only three low neighbours, so rule should not fire.")))
;; fewer than number neighbours have property less than numeric-value
(testing "Fewer than number neighbours have property less than numeric-value"
(let [afn (compile-rule "if fewer than 4 neighbours have altitude less than 10 then state should be beach")
world (transform-world
(make-world 3 3)
(list (compile-rule "if x is 2 then altitude should be 11")
(compile-rule "if x is less than 2 then altitude should be 0")))]
(is (nil? (apply afn (list {:x 1 :y 1} world)))
"Centre cell has five low neighbours, so rule should not fire")
(is (= (:state (apply afn (list {:x 2 :y 1} world))) :beach)
"Middle cell of the strip has only three low neighbours, so rule should fire.")))
;; some neighbours have property less than numeric-value
(testing "Some number neighbours have property less than numeric-value"
(let [afn (compile-rule "if some neighbours have altitude less than 10 then state should be beach")
world (transform-world
(make-world 3 3)
(list (compile-rule "if x is less than 2 then altitude should be 11")
(compile-rule "if x is 2 then altitude should be 0")))]
(is (= (:state (apply afn (list {:x 1 :y 1} world))) :beach)
"Rule fires when condition is met (strip of altitude 0 down right hand side)")
(is (nil? (apply afn (list {:x 0 :y 1} world)))
"Left of world is all high, so rule should not fire.")))
;; 'single action' already tested in 'condition' tests above
;; action and actions
(testing "Conjunction of actions"
(let [afn (compile-rule "if state is new then state should be grassland and fertility should be 0")]
(is (= (apply afn (list {:state :new} nil))
{:state :grassland :fertility 0})
"Both actions are executed")))
;; 'property should be symbolic-value' and 'property should be numeric-value'
;; already tested in tests above
;; number chance in number property should be value
(testing "Syntax of probability rule - action of real probability very hard to test"
(let [afn (compile-rule "if state is forest then 5 chance in 5 state should be climax")]
(is (= (:state (apply afn (list {:state :forest} nil))) :climax)
"five chance in five should fire every time"))
(let [afn (compile-rule "if state is forest then 0 chance in 5 state should be climax")]
(is (nil? (apply afn (list {:state :forest} nil)))
"zero chance in five should never fire")))
;; property operator numeric-value
(testing "Arithmetic action: addition of number"
(let [afn (compile-rule "if state is climax then fertility should be fertility + 1")]
(is (= (:fertility
(apply afn (list {:state :climax :fertility 0} nil)))
1)
"Addition is executed")))
(testing "Arithmetic action: addition of property value"
(let [afn (compile-rule "if state is climax then fertility should be fertility + leaf-fall")]
(is (= (:fertility
(apply afn
(list {:state :climax
:fertility 0
:leaf-fall 1} nil)))
1)
"Addition is executed")))
(testing "Arithmetic action: subtraction of number"
(let [afn (compile-rule "if state is crop then fertility should be fertility - 1")]
(is (= (:fertility
(apply afn (list {:state :crop :fertility 2} nil)))
1)
"Action is executed")))
(testing "Arithmetic action: subtraction of property value"
(let [afn (compile-rule "if wolves are more than 0 then deer should be deer - wolves")]
(is (= (:deer
(apply afn
(list {:deer 3
:wolves 2} nil)))
1)
"Action is executed")))
(testing "Arithmetic action: multiplication by number"
(let [afn (compile-rule "if deer are more than 1 then deer should be deer * 2")]
(is (= (:deer
(apply afn (list {:deer 2} nil)))
4)
"Action is executed")))
(testing "Arithmetic action: multiplication by property value"
(let [afn (compile-rule "if state is crop then deer should be deer * deer")]
(is (= (:deer
(apply afn
(list {:state :crop :deer 2} nil)))
4)
"Action is executed")))
(testing "Arithmetic action: division by number"
(let [afn (compile-rule "if wolves are more than 0 then deer should be deer / 2")]
(is (= (:deer
(apply afn (list {:deer 2 :wolves 1} nil)))
1)
"Action is executed")))
(testing "Arithmetic action: division by property value"
(let [afn (compile-rule "if wolves are more than 0 then deer should be deer / wolves")]
(is (= (:deer
(apply afn
(list {:deer 2 :wolves 2} nil)))
1)
"Action is executed")))
;; simple within distance
(testing "Number neighbours within distance have property equal to value"
(let [afn (compile-rule "if 8 neighbours within 2 have state equal to new then state should be water")
world (make-world 5 5)]
(is (= (apply afn (list {:x 0 :y 0} world))
{:state :water :x 0 :y 0})
"Rule fires when condition is met (in a new world all cells are new, corner cell has eight neighbours within two)")
(is (nil? (apply afn (list {:x 1 :y 1} world)))
"Middle cell has twenty-four neighbours within two, so rule does not fire.")))
;; comparator within distance
(testing "More than number neighbours within distance have property equal to symbolic-value"
(let [afn (compile-rule "if more than 7 neighbours within 2 have state equal to grassland and more than 7 neighbours within 2 have state equal to water then state should be beach")
;; 5x5 world, strip of high ground two cells wide down left hand side
;; xxooo
;; xxooo
;; xxooo
;; xxooo
;; xxooo
world (transform-world
(make-world 5 5)
(list (compile-rule "if x is less than 2 then altitude should be 11 and state should be grassland")
(compile-rule "if x is more than 1 then altitude should be 0 and state should be water")))]
(is (= (:state (apply afn (list {:x 2 :y 2} world))) :beach)
"Rule fires when condition is met (strip of altitude 11 down right hand side)")
(is (nil? (apply afn (list {:x 0 :y 1} world)))
"Middle cell of the strip has only two high neighbours, so rule should not fire."))
)) ))