Compare commits

..

28 commits

Author SHA1 Message Date
simon 00e8a25144 Merge branch 'master' of github.com:simon-brooke/mw-parser 2016-08-03 17:57:55 +01:00
simon e40d89fdef Very considerable progress on the new parser. The deer/wolves rules still fail,
as does one complicated form of neighbours rule; but I'm almost there.
2016-08-03 17:41:48 +01:00
simon d44ba60802 Merge branch 'master' of ssh://goldsmith.journeyman.cc/srv/git/mw-parser 2016-08-03 10:23:16 +01:00
Simon Brooke 5db1055027 Some work on unit testing declarative parser. 2016-08-03 10:07:18 +01:00
simon 547edbe56a Added the simplifier, although it's not currently used, I don't think 2016-03-04 01:02:17 +00:00
Simon Brooke 717097070a State of play just before going back to Glasgow. Doesn't fully work yet, but close. 2016-01-03 14:59:24 +00:00
Simon Brooke ac73639533 Now passing on all but neighbours rules, which I knew I hadn't dealt with 2016-01-02 15:09:55 +00:00
Simon Brooke b23aae26ce Commit before alph-ordering grammar. 2016-01-02 14:24:40 +00:00
Simon Brooke 13e87f8f7a Merge branch 'master' of ssh://goldsmith.journeyman.cc/srv/git/mw-parser 2015-12-29 14:12:25 +00:00
Simon Brooke 77c7dc4a91 Further substantial progress made, but it still doesn't completely work. 2015-12-29 14:11:36 +00:00
Simon Brooke 63e57753b0 Further substantial progress made, but it still doesn't completely work. 2015-12-29 14:09:39 +00:00
Simon Brooke b08881a99e Added many more unit tests; parser appears to be working correctly,
generator still needs work. But very promising!
2015-12-28 19:46:18 +00:00
Simon Brooke b11c1ba575 Added link to Goldsmith in README. 2015-03-28 19:29:58 +00:00
Simon Brooke aa111df790 Typo. 2015-03-28 17:32:18 +00:00
Simon Brooke 1fb23ea9ce Links to github repositories of related projects 2015-03-28 17:17:59 +00:00
Simon Brooke 6c1ecd7f45 Preparing to release to github. Added comments about the status of the
core and insta parsers.
2015-03-28 16:41:02 +00:00
Simon Brooke 6166dc254c Now almost to the point that the new parser can compile simple rules! 2015-02-13 22:25:53 +00:00
simon 52a4f62310 New parser now well advanced, parses all but one of the test rules.
However code generation only just started.
2015-02-12 08:11:50 +00:00
Simon Brooke 72c4f45553 Merge branch 'master' of ssh://goldsmith.journeyman.cc/srv/git/mw-parser 2015-02-10 22:27:47 +00:00
Simon Brooke bbac9a9c6e New work on the parser, based on instaparse. 2015-02-10 22:26:53 +00:00
simon 2e7eefc748 Using Clojure 1.6 2014-10-20 17:25:56 +01:00
Simon Brooke dddeea6041 Upversioned from 0.1.4 to 0.1.5-SNAPSHOT 2014-10-15 22:19:08 +01:00
Simon Brooke 79b8e11df8 Upversioned from 0.1.4-SNAPSHOT to 0.1.4 for release 2014-10-15 22:18:47 +01:00
Simon Brooke 0a3e83f6c8 Merge branch 'master' of ssh://goldsmith.journeyman.cc/srv/git/mw-parser
Conflicts:
	project.clj
2014-10-01 18:53:33 +01:00
Simon Brooke d93d56dfab Changed memory size (?) 2014-09-07 20:15:24 +01:00
simon 84a187796b Upversioned from 0.1.3 to 0.1.4-SNAPSHOT 2014-08-30 14:59:52 +01:00
simon c31dd91185 Upversioned from 0.1.3-SNAPSHOT to 0.1.3 for release 2014-08-30 14:59:26 +01:00
simon 40631e530f Upversioned from 0.1.3 to 0.1.3-SNAPSHOT 2014-08-30 14:52:56 +01:00
7 changed files with 1012 additions and 12 deletions

View file

@ -2,6 +2,17 @@
A rule parser for MicroWorld A rule parser for MicroWorld
## Part of the overall MicroWorld system
While this code works and is interesting on its own, you also need at least
[mw-engine](https://github.com/simon-brooke/mw-engine) and
[mw-ui](https://github.com/simon-brooke/mw-ui). There will be other
modules in due course.
You can see MicroWorld in action [here](http://www.journeyman.cc/microworld/) -
but please don't be mean to my poor little server. If you want to run big maps
or complex rule-sets, please run it on your own machines.
## Usage ## Usage
Main entry point is (parse-rule _string_), where string takes a form detailed Main entry point is (parse-rule _string_), where string takes a form detailed
@ -188,6 +199,15 @@ and _operator_ is one of the simple arithmetic operators '+', '-', '*' and '/'.
Note that '...neighbours are...' is equivalent to '...neighbours have state equal to...', Note that '...neighbours are...' is equivalent to '...neighbours have state equal to...',
and 'some neighbours...' is equivalent to 'more than 0 neighbours...' and 'some neighbours...' is equivalent to 'more than 0 neighbours...'
### Roadmap
The existing parser, *mw-parser.core*, works but is not well written. A much
better parser which does not yet completely work, *mw-parser.insta*, is also
included for the adventurous.
I intend to replace *mw-parser.core* with *mw-parser.insta* as soon as
*mw-parser.insta* correctly parses all the test rules.
## License ## License
Copyright © 2014 [Simon Brooke](mailto:simon@journeyman.cc) Copyright © 2014 [Simon Brooke](mailto:simon@journeyman.cc)

View file

@ -1,4 +1,4 @@
(defproject mw-parser "0.1.3" (defproject mw-parser "0.1.5-SNAPSHOT"
:description "Parser for production rules for MicroWorld engine" :description "Parser for production rules for MicroWorld engine"
:url "http://www.journeyman.cc/microworld" :url "http://www.journeyman.cc/microworld"
:manifest { :manifest {
@ -11,7 +11,8 @@
:license {:name "GNU General Public License v2" :license {:name "GNU General Public License v2"
:url "http://www.gnu.org/licenses/gpl-2.0.html"} :url "http://www.gnu.org/licenses/gpl-2.0.html"}
:plugins [[lein-marginalia "0.7.1"]] :plugins [[lein-marginalia "0.7.1"]]
:dependencies [[org.clojure/clojure "1.5.1"] :dependencies [[org.clojure/clojure "1.6.0"]
[org.clojure/tools.trace "0.7.8"] [org.clojure/tools.trace "0.7.9"]
[mw-engine "0.1.3"] [instaparse "1.4.1"]
[mw-engine "0.1.5-SNAPSHOT"]
]) ])

View file

@ -20,8 +20,10 @@
;; semantics - but that is buggy behaviour, which I'll try to fix over the next few weeks, not a ;; semantics - but that is buggy behaviour, which I'll try to fix over the next few weeks, not a
;; design fault. ;; design fault.
;; ;;
;; More significantly it does not generate useful error messages on failure. This is, I think, a much ;; More significantly it does not generate useful error messages on failure.
;; more complex issue which I don't yet know how to address. ;;
;; This is the parser that is actually used currently; but see also insta.clj,
;; which is potentially a much better parser but does not quite work yet.
(ns mw-parser.core (ns mw-parser.core
(:use mw-engine.utils (:use mw-engine.utils

View file

@ -0,0 +1,368 @@
(ns mw-parser.declarative
(:use mw-engine.utils
[clojure.string :only [split trim triml]])
(:require [instaparse.core :as insta]))
;; error thrown when an attempt is made to set a reserved property
(def reserved-properties-error
"The properties 'x' and 'y' of a cell are reserved and should not be set in rule actions")
;; error thrown when a rule cannot be parsed. Slots are for
;; (1) rule text
;; (2) cursor showing where in the rule text the error occurred
;; (3) the reason for the error
(def bad-parse-error "I did not understand:\n'%s'\n%s\n%s")
(def grammar
;; in order to simplify translation into other natural languages, all
;; TOKENS within the parser should be unambiguous
"RULE := IF SPACE CONDITIONS SPACE THEN SPACE ACTIONS;
CONDITIONS := DISJUNCT-CONDITION | CONJUNCT-CONDITION | PROPERTY-CONDITION | NEIGHBOURS-CONDITION ;
DISJUNCT-CONDITION := CONDITION SPACE OR SPACE CONDITIONS;
CONJUNCT-CONDITION := CONDITION SPACE AND SPACE CONDITIONS;
CONDITION := NEIGHBOURS-CONDITION | PROPERTY-CONDITION;
WITHIN-CONDITION := NEIGHBOURS-CONDITION SPACE WITHIN SPACE NUMERIC-EXPRESSION;
NEIGHBOURS-CONDITION := WITHIN-CONDITION | QUANTIFIER SPACE NEIGHBOURS SPACE IS SPACE PROPERTY-CONDITION | QUANTIFIER SPACE NEIGHBOURS IS EXPRESSION | QUALIFIER SPACE NEIGHBOURS-CONDITION;
PROPERTY-CONDITION := PROPERTY SPACE QUALIFIER SPACE EXPRESSION | VALUE;
EXPRESSION := SIMPLE-EXPRESSION | RANGE-EXPRESSION | NUMERIC-EXPRESSION | DISJUNCT-EXPRESSION | VALUE;
SIMPLE-EXPRESSION := QUALIFIER SPACE EXPRESSION | VALUE;
DISJUNCT-EXPRESSION := IN SPACE DISJUNCT-VALUE;
RANGE-EXPRESSION := BETWEEN SPACE NUMERIC-EXPRESSION SPACE AND SPACE NUMERIC-EXPRESSION;
NUMERIC-EXPRESSION := VALUE | VALUE SPACE OPERATOR SPACE NUMERIC-EXPRESSION;
NEGATED-QUALIFIER := QUALIFIER SPACE NOT | NOT SPACE QUALIFIER;
COMPARATIVE-QUALIFIER := IS SPACE COMPARATIVE SPACE THAN;
QUALIFIER := COMPARATIVE-QUALIFIER | NEGATED-QUALIFIER | EQUIVALENCE | IS SPACE QUALIFIER;
QUANTIFIER := NUMBER | SOME | NONE | ALL | COMPARATIVE SPACE THAN SPACE NUMBER;
EQUIVALENCE := IS SPACE EQUAL | EQUAL | IS ;
COMPARATIVE := MORE | LESS;
DISJUNCT-VALUE := VALUE | VALUE SPACE OR SPACE DISJUNCT-VALUE;
IF := 'if';
THEN := 'then';
THAN := 'than';
OR := 'or';
NOT := 'not';
AND := 'and';
SOME := 'some';
NONE := 'no';
ALL := 'all'
BETWEEN := 'between';
WITHIN := 'within';
IN := 'in';
MORE := 'more' | 'greater';
LESS := 'less' | 'fewer';
OPERATOR := '+' | '-' | '*' | '/';
NEIGHBOURS := 'neighbour' | 'neighbor' | 'neighbours' | 'neighbors';
PROPERTY := SYMBOL;
VALUE := SYMBOL | NUMBER;
EQUAL := 'equal to';
IS := 'is' | 'are' | 'have' | 'has';
NUMBER := #'[0-9]+' | #'[0-9]+.[0-9]+';
SYMBOL := #'[a-z]+';
ACTIONS := ACTION | ACTION SPACE 'and' SPACE ACTIONS
ACTION := SIMPLE-ACTION | PROBABLE-ACTION;
PROBABLE-ACTION := VALUE SPACE 'chance in' SPACE VALUE SPACE SIMPLE-ACTION;
SIMPLE-ACTION := SYMBOL SPACE BECOMES SPACE EXPRESSION
BECOMES := 'should be'
SPACE := #' *'"
)
(defn TODO
"Marker to indicate I'm not yet finished!"
[message]
message)
(declare generate simplify)
(defn suitable-fragment?
"Return `true` if `tree-fragment` appears to be a tree fragment of the expected `type`."
[tree-fragment type]
(and (coll? tree-fragment)
(= (first tree-fragment) type)))
(defn assert-type
"If `tree-fragment` is not a tree fragment of the expected `type`, throw an exception."
[tree-fragment type]
(assert (suitable-fragment? tree-fragment type)
(throw (Exception. (format "Expected a %s fragment" type)))))
(defn generate-rule
"From this `tree`, assumed to be a syntactically correct rule specification,
generate and return the appropriate rule as a function of two arguments."
[tree]
(assert-type tree :RULE)
(list 'fn ['cell 'world] (list 'if (generate (nth tree 2)) (generate (nth tree 3)))))
(defn generate-conditions
"From this `tree`, assumed to be a syntactically correct conditions clause,
generate and return the appropriate clojure fragment."
[tree]
(assert-type tree :CONDITIONS)
(generate (nth tree 1)))
(defn generate-condition
[tree]
(assert-type tree :CONDITION)
(generate (nth tree 1)))
(defn generate-conjunct-condition
[tree]
(assert-type tree :CONJUNCT-CONDITION)
(list 'and (generate (nth tree 1))(generate (nth tree 3))))
(defn generate-disjunct-condition
[tree]
(assert-type tree :DISJUNCT-CONDITION)
(list 'or (generate (nth tree 1))(generate (nth tree 3))))
(defn generate-ranged-property-condition
"Generate a property condition where the expression is a numeric range"
[tree property expression]
(assert-type tree :PROPERTY-CONDITION)
(assert-type (nth tree 3) :RANGE-EXPRESSION)
(let [l1 (generate (nth expression 2))
l2 (generate (nth expression 4))
pv (list property 'cell)]
(list 'let ['lower (list 'min l1 l2)
'upper (list 'max l1 l2)]
(list 'and (list '>= pv 'lower)(list '<= pv 'upper)))))
(defn generate-disjunct-property-condition
"Generate a property condition where the expression is a disjunct expression.
TODO: this is definitely still wrong!"
([tree]
(let [property (generate (nth tree 1))
qualifier (generate (nth tree 2))
expression (generate (nth tree 3))]
(generate-disjunct-property-condition tree property qualifier expression)))
([tree property qualifier expression]
(let [e (list 'some (list 'fn ['i] '(= i value)) (list 'quote expression))]
(list 'let ['value (list property 'cell)]
(if (= qualifier '=) e
(list 'not e))))))
(defn generate-property-condition
([tree]
(assert-type tree :PROPERTY-CONDITION)
(if
(and (= (count tree) 2) (= (first (second tree)) :SYMBOL))
;; it's a shorthand for 'state equal to symbol'. This should probably have
;; been handled in simplify...
(generate-property-condition
(list
:PROPERTY-CONDITION
'(:SYMBOL "state")
'(:QUALIFIER (:EQUIVALENCE (:EQUAL "equal to")))
(second tree)))
;; otherwise...
(generate-property-condition tree (first (nth tree 3)))))
([tree expression-type]
(assert-type tree :PROPERTY-CONDITION)
(let [property (generate (nth tree 1))
qualifier (generate (nth tree 2))
expression (generate (nth tree 3))]
(case expression-type
:DISJUNCT-EXPRESSION (generate-disjunct-property-condition tree property qualifier expression)
:RANGE-EXPRESSION (generate-ranged-property-condition tree property expression)
(list qualifier (list property 'cell) expression)))))
(defn generate-simple-action
[tree]
(assert-type tree :SIMPLE-ACTION)
(let [property (generate (nth tree 1))
expression (generate (nth tree 3))]
(if (or (= property :x) (= property :y))
(throw (Exception. reserved-properties-error))
(list 'merge 'cell {property expression}))))
(defn generate-multiple-actions
[tree]
(assert (and (coll? tree)(= (first tree) :ACTIONS)) "Expected an ACTIONS fragment")
(conj 'do (map generate-simple-action (rest tree))))
(defn generate-disjunct-value
"Generate a disjunct value. Essentially what we need here is to generate a
flat list of values, since the `member` has already been taken care of."
[tree]
(assert-type tree :DISJUNCT-VALUE)
(if (= (count tree) 4)
(cons (generate (second tree)) (generate (nth tree 3)))
(list (generate (second tree)))))
(defn generate-numeric-expression
[tree]
(assert-type tree :NUMERIC-EXPRESSION)
(case (first (second tree))
:SYMBOL (list (keyword (second (second tree))) 'cell)
(generate (second tree))))
(defn generate-neighbours-condition
"Generate code for a condition which refers to neighbours."
([tree]
(assert-type tree :NEIGHBOURS-CONDITION)
(generate-neighbours-condition tree (first (second (second tree)))))
([tree quantifier-type]
(let [quantifier (second tree)
pc (generate (nth tree 4))]
(case quantifier-type
:NUMBER (generate-neighbours-condition '= (read-string (second (second quantifier))) pc 1)
:SOME (generate-neighbours-condition '> 0 pc 1)
:MORE (let [value (generate (nth quantifier 3))]
(generate-neighbours-condition '> value pc 1))
:LESS (let [value (generate (nth quantifier 3))]
(generate-neighbours-condition '< value pc 1)))))
([comp1 quantity property-condition distance]
(list comp1
(list 'count
(list 'remove 'false?
(list 'map (list 'fn ['cell] property-condition)
(list 'mw-engine.utils/get-neighbours 'world 'cell distance)))) quantity))
([comp1 quantity property-condition]
(generate-neighbours-condition comp1 quantity property-condition 1)))
(defn generate
"Generate code for this (fragment of a) parse tree"
[tree]
(if
(coll? tree)
(case (first tree)
:ACTIONS (generate-multiple-actions tree)
:COMPARATIVE (generate (second tree))
:COMPARATIVE-QUALIFIER (generate (nth tree 2))
:CONDITION (generate-condition tree)
:CONDITIONS (generate-conditions tree)
:CONJUNCT-CONDITION (generate-conjunct-condition tree)
:DISJUNCT-CONDITION (generate-disjunct-condition tree)
:DISJUNCT-EXPRESSION (generate (nth tree 2))
:DISJUNCT-VALUE (generate-disjunct-value tree)
:EQUIVALENCE '=
:EXPRESSION (generate (second tree))
:LESS '<
:MORE '>
:NEGATED-QUALIFIER (case (generate (second tree))
= 'not=
> '<
< '>)
:NEIGHBOURS-CONDITION (generate-neighbours-condition tree)
:NUMERIC-EXPRESSION (generate-numeric-expression tree)
:NUMBER (read-string (second tree))
:PROPERTY (list (generate (second tree)) 'cell) ;; dubious - may not be right
:PROPERTY-CONDITION (generate-property-condition tree)
:QUALIFIER (generate (second tree))
:RULE (generate-rule tree)
:SIMPLE-ACTION (generate-simple-action tree)
:SYMBOL (keyword (second tree))
:VALUE (generate (second tree))
(map generate tree))
tree))
(defn simplify-qualifier
"Given that this `tree` fragment represents a qualifier, what
qualifier is that?"
[tree]
(cond
(empty? tree) nil
(and (coll? tree)
(member? (first tree) '(:EQUIVALENCE :COMPARATIVE))) tree
(coll? (first tree)) (or (simplify-qualifier (first tree))
(simplify-qualifier (rest tree)))
(coll? tree) (simplify-qualifier (rest tree))
true tree))
(defn simplify-second-of-two
"There are a number of possible simplifications such that if the `tree` has
only two elements, the second is semantically sufficient."
[tree]
(if (= (count tree) 2) (simplify (nth tree 1)) tree))
(defn rule?
"Return true if the argument appears to be a parsed rule tree, else false."
[maybe-rule]
(and (coll? maybe-rule) (= (first maybe-rule) :RULE)))
(defn simplify
"Simplify/canonicalise this `tree`. Opportunistically replace complex fragments with
semantically identical simpler fragments"
[tree]
(if
(coll? tree)
(case (first tree)
:ACTION (simplify-second-of-two tree)
:ACTIONS (simplify-second-of-two tree)
:COMPARATIVE (simplify-second-of-two tree)
:CONDITION (simplify-second-of-two tree)
:CONDITIONS (simplify-second-of-two tree)
:EXPRESSION (simplify-second-of-two tree)
:NOT nil ;; TODO is this right?!? It looks wrong
:PROPERTY (simplify-second-of-two tree)
:SPACE nil
:THEN nil
:VALUE (simplify-second-of-two tree)
(remove nil? (map simplify tree)))
tree))
(def parse-rule
"Parse the argument, assumed to be a string in the correct syntax, and return a parse tree."
(insta/parser grammar))
(defn explain-parse-error-reason
"Attempt to explain the reason for the parse error."
[reason]
(str "Expecting one of (" (apply str (map #(str (:expecting %) " ") reason)) ")"))
(defn parser-error-to-map
[parser-error]
(let [m (reduce (fn [map item](merge map {(first item)(second item)})) {} parser-error)
reason (map
#(reduce (fn [map item] (merge {(first item) (second item)} map)) {} %)
(:reason m))]
(merge m {:reason reason})))
(defn throw-parse-exception
"Construct a helpful error message from this `parser-error`, and throw an exception with that message."
[parser-error]
(assert (coll? parser-error) "Expected a paser error structure?")
(let
[
;; the error structure is a list, such that each element is a list of two items, and
;; the first element in each sublist is a keyword. Easier to work with it as a map
error-map (parser-error-to-map parser-error)
text (:text error-map)
reason (explain-parse-error-reason (:reason error-map))
;; rules have only one line, by definition; we're interested in the column
column (if (:column error-map)(:column error-map) 0)
;; create a cursor to point to that column
cursor (apply str (reverse (conj (repeat column " ") "^")))
message (format bad-parse-error text cursor reason)
]
(throw (Exception. message))))
(defn compile-rule
"Compile this `rule`, assumed to be a string with appropriate syntax, into a function of two arguments,
a `cell` and a `world`, having the same semantics."
[rule]
(assert (string? rule))
(let [tree (simplify (parse-rule rule))]
(if (rule? tree) (eval (generate tree))
(throw-parse-exception tree))))

View file

@ -0,0 +1,92 @@
(ns mw-parser.simplifier
(:use mw-engine.utils
mw-parser.parser))
(declare simplify)
(defn simplify-qualifier
"Given that this `tree` fragment represents a qualifier, what
qualifier is that?"
[tree]
(cond
(empty? tree) nil
(and (coll? tree)
(member? (first tree) '(:EQUIVALENCE :COMPARATIVE))) tree
(coll? (first tree)) (or (simplify-qualifier (first tree))
(simplify-qualifier (rest tree)))
(coll? tree) (simplify-qualifier (rest tree))
true tree))
(defn simplify-second-of-two
"There are a number of possible simplifications such that if the `tree` has
only two elements, the second is semantically sufficient."
[tree]
(if (= (count tree) 2) (simplify (nth tree 1)) tree))
(defn simplify-some
"'some' is the same as 'more than zero'"
[tree]
[:COMPARATIVE '> 0])
(defn simplify-none
"'none' is the same as 'zero'"
[tree]
[:COMPARATIVE '= 0])
(defn simplify-all
"'all' isn't actually the same as 'eight', because cells at the edges of the world have
fewer than eight neighbours; but it's a simplifying (ha!) assumption for now."
[tree]
[:COMPARATIVE '= 8])
(defn simplify-quantifier
"If this quantifier is a number, 'simplifiy' it into a comparative whose operator is '='
and whose quantity is that number. This is actually more complicated but makes generation easier."
[tree]
(if (number? (second tree)) [:COMPARATIVE '= (second tree)] (simplify (second tree))))
(defn simplify
"Simplify/canonicalise this `tree`. Opportunistically replace complex fragments with
semantically identical simpler fragments"
[tree]
(if
(coll? tree)
(case (first tree)
:SPACE nil
:QUALIFIER (simplify-qualifier tree)
:CONDITIONS (simplify-second-of-two tree)
:CONDITION (simplify-second-of-two tree)
:EXPRESSION (simplify-second-of-two tree)
:COMPARATIVE (simplify-second-of-two tree)
:QUANTIFIER (simplify-quantifier tree)
:VALUE (simplify-second-of-two tree)
:PROPERTY (simplify-second-of-two tree)
:ACTIONS (simplify-second-of-two tree)
:ACTION (simplify-second-of-two tree)
:ALL (simplify-all tree)
:SOME (simplify-some tree)
:NONE (simplify-none tree)
(remove nil? (map simplify tree)))
tree))
(simplify (parse-rule "if state is climax and 4 neighbours have state equal to fire then 3 chance in 5 state should be fire"))
(simplify (parse-rule "if state is climax and no neighbours have state equal to fire then 3 chance in 5 state should be fire"))
(simplify (parse-rule "if state is in grassland or pasture or heath and more than 4 neighbours have state equal to water then state should be village"))
(simplify (parse-rule "if 6 neighbours have state equal to water then state should be village"))
(simplify (parse-rule "if fertility is between 55 and 75 then state should be climax"))
(simplify (parse-rule "if state is forest then state should be climax"))
(simplify (parse-rule "if state is in grassland or pasture or heath and more than 4 neighbours have state equal to water then state should be village"))
(simplify (parse-rule "if altitude is less than 100 and state is forest then state should be climax and deer should be 3"))
(simplify (parse-rule "if altitude is 100 or fertility is 25 then state should be heath and fertility should be 24.3"))
(simplify (parse-rule "if altitude is 100 or fertility is 25 then state should be heath"))
(simplify (parse-rule "if deer is more than 2 and wolves is 0 and fertility is more than 20 then deer should be deer + 2"))
(simplify (parse-rule "if deer is more than 1 and wolves is more than 1 then deer should be deer - wolves"))
(simplify (parse-rule "if state is grassland and 4 neighbours have state equal to water then state should be village"))

View file

@ -0,0 +1,517 @@
(ns mw-parser.declarative-test
(:use clojure.pprint
mw-engine.core
mw-engine.world
mw-engine.utils)
(:require [clojure.test :refer :all]
[mw-parser.declarative :refer :all]))
(deftest rules-tests
(testing "Rule parser - does not test whether generated functions actually work, just that something is generated!"
(is (rule? (parse-rule "if state is forest then state should be climax")))
(is (rule? (parse-rule "if state is in grassland or pasture or heath then state should be village")))
(is (rule? (parse-rule "if altitude is less than 100 and state is forest then state should be climax and deer should be 3")))
(is (rule? (parse-rule "if altitude is 100 or fertility is 25 then state should be heath and fertility should be 24.3")))
(is (rule? (parse-rule "if altitude is 100 or fertility is 25 then state should be heath")))
(is (rule? (parse-rule "if deer is more than 2 and wolves is 0 and fertility is more than 20 then deer should be deer + 2")))
(is (rule? (parse-rule "if deer is more than 1 and wolves is more than 1 then deer should be deer - wolves")))
(is (rule? (parse-rule "if state is forest and fertility is between 55 and 75 then state should be climax")))
(is (rule? (parse-rule "if fertility is between 55 and 75 then state should be climax")))
(is (rule? (parse-rule "if altitude is less than 100 and state is forest then state should be climax and deer should be 3")))
))
(deftest neighbours-rules-tests
(testing "Rules which relate to neighbours - hard!"
(is (rule? (parse-rule "if state is climax and some neighbours have state equal to fire then 3 chance in 5 state should be fire")))
(is (rule? (parse-rule "if state is in grassland or pasture or heath and 4 neighbours have state equal to water then state should be village")))
(is (rule? (parse-rule "if 6 neighbours have state equal to water then state should be village")))
(is (rule? (parse-rule "if state is grassland and 4 neighbours have state equal to water then state should be village")))
(is (rule? (parse-rule "if state is pasture and more than 3 neighbours have state equal to scrub then state should be scrub")))
(is (rule? (parse-rule "if state is in grassland or pasture or heath and 4 neighbours have state equal to water then state should be village")))
(is (rule? (parse-rule "if state is grassland and 4 neighbours have state equal to water then state should be village")))
(is (rule? (parse-rule "if 6 neighbours have state equal to water then state should be village")))
))
(deftest expressions-tests
(testing "Generating primitive expressions."
(is (generate '(:NUMERIC-EXPRESSION (:NUMBER "50"))) 50)
(is (generate '(:NUMERIC-EXPRESSION (:SYMBOL "sealevel")))
'(:sealevel cell))
))
(deftest lhs-generators-tests
(testing "Generating left-hand-side fragments of rule functions from appropriate fragments of parse trees"
(is (generate
'(:PROPERTY-CONDITION (:SYMBOL "state") [:EQUIVALENCE [:IS "is"]] (:SYMBOL "forest")))
'(= (:state cell) :forest))
(is (generate
'(:PROPERTY-CONDITION (:SYMBOL "fertility") [:EQUIVALENCE [:IS "is"]] (:NUMBER "10")))
'(= (:fertility cell) 10))
(is (generate '(:PROPERTY-CONDITION (:SYMBOL "fertility") [:COMPARATIVE [:LESS "less"]] (:NUMBER "10")))
'(< (:fertility cell) 10))
(is (generate '(:PROPERTY-CONDITION (:SYMBOL "fertility") [:COMPARATIVE [:MORE "more"]] (:NUMBER "10")))
'(> (:fertility cell) 10))
(is (generate '(:CONJUNCT-CONDITION (:PROPERTY-CONDITION (:SYMBOL "state") [:EQUIVALENCE [:IS "is"]] (:SYMBOL "forest")) (:AND "and") (:PROPERTY-CONDITION (:SYMBOL "fertility") [:EQUIVALENCE [:IS "is"]] (:NUMBER "10"))))
'(and (= (:state cell) :forest) (= (:fertility cell) 10)))
(is (generate '(:DISJUNCT-CONDITION (:PROPERTY-CONDITION (:SYMBOL "state") [:EQUIVALENCE [:IS "is"]] (:SYMBOL "forest")) (:OR "or") (:PROPERTY-CONDITION (:SYMBOL "fertility") [:EQUIVALENCE [:IS "is"]] (:NUMBER "10"))))
'(or (= (:state cell) :forest) (= (:fertility cell) 10)))
(is (generate '(:PROPERTY-CONDITION (:SYMBOL "state") [:EQUIVALENCE [:IS "is"]] (:DISJUNCT-EXPRESSION (:IN "in") (:DISJUNCT-VALUE (:SYMBOL "grassland") (:OR "or") (:DISJUNCT-VALUE (:SYMBOL "pasture") (:OR "or") (:DISJUNCT-VALUE (:SYMBOL "heath")))))))
'(let [value (:state cell)] (some (fn [i] (= i value)) (quote (:grassland :pasture :heath)))))
(is (generate '(:PROPERTY-CONDITION (:SYMBOL "altitude") [:EQUIVALENCE [:IS "is"]] (:RANGE-EXPRESSION (:BETWEEN "between") (:NUMERIC-EXPRESSION (:NUMBER "50")) (:AND "and") (:NUMERIC-EXPRESSION (:NUMBER "100")))))
'(let [lower (min 50 100) upper (max 50 100)] (and (>= (:altitude cell) lower) (<= (:altitude cell) upper))))
))
(deftest rhs-generators-tests
(testing "Generating right-hand-side fragments of rule functions from appropriate fragments of parse trees"
(is (generate
'(:SIMPLE-ACTION (:SYMBOL "state") (:BECOMES "should be") (:SYMBOL "climax")))
'(merge cell {:state :climax}))
(is (generate
'(:SIMPLE-ACTION (:SYMBOL "fertility") (:BECOMES "should be") (:NUMBER "10")))
'(merge cell {:fertility 10}))
))
(deftest full-generation-tests
(testing "Full rule generation from pre-parsed tree"
(is (generate '(:RULE (:IF "if") (:PROPERTY-CONDITION (:SYMBOL "state") [:EQUIVALENCE [:IS "is"]] (:SYMBOL "forest")) (:SIMPLE-ACTION (:SYMBOL "state") (:BECOMES "should be") (:SYMBOL "climax"))))
'(fn [cell world] (if (= (:state cell) :forest) (merge cell {:state :climax}))))
))
(deftest exception-tests
(testing "Constructions which should cause exceptions to be thrown"
(is (thrown-with-msg? Exception #"^I did not understand.*"
(compile-rule "the quick brown fox jumped over the lazy dog"))
"Exception thrown if rule text does not match grammar")
(is (thrown-with-msg? Exception #"^I did not understand.*"
(compile-rule "if i have a cat on my lap then everything is fine"))
"Exception thrown if rule text does not match grammar")
(is (thrown-with-msg?
Exception #"The properties 'x' and 'y' of a cell are reserved and should not be set in rule actions"
(compile-rule "if state is new then x should be 0"))
"Exception thrown on attempt to set 'x'")
(is (thrown-with-msg?
Exception #"The properties 'x' and 'y' of a cell are reserved and should not be set in rule actions"
(compile-rule "if state is new then y should be 0"))
"Exception thrown on attempt to set 'y'")
))
(deftest correctness-tests
;; these are, in so far as possible, the same as the correctness-tests in core-tests - i.e., the two compilers
;; compile the same language.
(testing "Simplest possible rule"
(let [afn (compile-rule "if state is new then state should be grassland")]
(is (= (apply afn (list {:state :new} nil))
{:state :grassland})
"Rule fires when condition is met")
(is (nil? (apply afn (list {:state :forest} nil)))
"Rule doesn't fire when condition isn't met")))
(testing "Condition conjunction rule"
(let [afn (compile-rule "if state is new and altitude is 0 then state should be water")]
(is (= (apply afn (list {:state :new :altitude 0} nil))
{:state :water :altitude 0})
"Rule fires when conditions are met")
(is (nil? (apply afn (list {:state :new :altitude 5} nil)))
"Rule does not fire: second condition not met")
(is (nil? (apply afn (list {:state :forest :altitude 0} nil)))
"Rule does not fire: first condition not met")))
(testing "Condition disjunction rule"
(let [afn (compile-rule "if state is new or state is waste then state should be grassland")]
(is (= (apply afn (list {:state :new} nil))
{:state :grassland})
"Rule fires: first condition met")
(is (= (apply afn (list {:state :waste} nil))
{:state :grassland})
"Rule fires: second condition met")
(is (nil? (apply afn (list {:state :forest} nil)))
"Rule does not fire: neither condition met")))
(testing "Simple negation rule"
(let [afn (compile-rule "if state is not new then state should be grassland")]
(is (nil? (apply afn (list {:state :new} nil)))
"Rule doesn't fire when condition isn't met")
(is (= (apply afn (list {:state :forest} nil))
{:state :grassland})
"Rule fires when condition is met")))
(testing "Can't set x or y properties"
(is (thrown-with-msg?
Exception #"The properties 'x' and 'y' of a cell are reserved and should not be set in rule actions"
(compile-rule "if state is new then x should be 0"))
"Exception thrown on attempt to set 'x'")
(is (thrown-with-msg?
Exception #"The properties 'x' and 'y' of a cell are reserved and should not be set in rule actions"
(compile-rule "if state is new then y should be 0"))
"Exception thrown on attempt to set 'y'"))
(testing "Simple list membership rule"
(let [afn (compile-rule "if state is in heath or scrub or forest then state should be climax")]
(is (= (apply afn (list {:state :heath} nil))
{:state :climax})
"Rule fires when condition is met")
(is (= (apply afn (list {:state :scrub} nil))
{:state :climax})
"Rule fires when condition is met")
(is (= (apply afn (list {:state :forest} nil))
{:state :climax})
"Rule fires when condition is met")
(is (nil? (apply afn (list {:state :grassland} nil)))
"Rule does not fire when condition is not met")))
(testing "Negated list membership rule"
(let [afn (compile-rule "if state is not in heath or scrub or forest then state should be climax")]
(is (nil? (apply afn (list {:state :heath} nil)))
"Rule does not fire when condition is not met")
(is (nil? (apply afn (list {:state :scrub} nil)))
"Rule does not fire when condition is not met")
(is (nil? (apply afn (list {:state :forest} nil)))
"Rule does not fire when condition is not met")
(is (= (apply afn (list {:state :grassland} nil))
{:state :climax})
"Rule fires when condition is met")))
(testing "Property is more than numeric-value"
(let [afn (compile-rule "if altitude is more than 200 then state should be snow")]
(is (= (apply afn (list {:altitude 201} nil))
{:state :snow :altitude 201})
"Rule fires when condition is met")
(is (nil? (apply afn (list {:altitude 200} nil)))
"Rule does not fire when condition is not met")))
;; TODO: this one is very tricky and will require a rethink of the way conditions are parsed.
;; (testing "Property is more than property"
;; (let [afn (compile-rule "if wolves are more than deer then deer should be 0")]
;; (is (= (apply afn (list {:deer 2 :wolves 3} nil))
;; {:deer 0 :wolves 3})
;; "Rule fires when condition is met")
;; (is (nil? (apply afn (list {:deer 3 :wolves 2} nil)))
;; "Rule does not fire when condition is not met")))
(testing "Property is less than numeric-value"
(let [afn (compile-rule "if altitude is less than 10 then state should be water")]
(is (= (apply afn (list {:altitude 9} nil))
{:state :water :altitude 9})
"Rule fires when condition is met")
(is (nil? (apply afn (list {:altitude 10} nil)))
"Rule does not fire when condition is not met")))
(testing "Property is less than property"
(let [afn (compile-rule "if wolves are less than deer then deer should be deer - wolves")]
(is (= (apply afn (list {:deer 3 :wolves 2} nil))
{:deer 1 :wolves 2})
"Rule fires when condition is met")
(is (nil? (apply afn (list {:deer 2 :wolves 3} nil)))
"Rule does not fire when condition is not met")))
(testing "Number neighbours have property equal to value"
(let [afn (compile-rule "if 3 neighbours have state equal to new then state should be water")
world (make-world 3 3)]
(is (= (apply afn (list {:x 0 :y 0} world))
{:state :water :x 0 :y 0})
"Rule fires when condition is met (in a new world all cells are new, corner cell has three neighbours)")
(is (nil? (apply afn (list {:x 1 :y 1} world)))
"Middle cell has eight neighbours, so rule does not fire."))
(let [afn (compile-rule "if 3 neighbours are new then state should be water")
world (make-world 3 3)]
;; 'are new' and 'is new' should be the same as 'have state equal to new'
(is (= (apply afn (list {:x 0 :y 0} world))
{:state :water :x 0 :y 0})
"Rule fires when condition is met (in a new world all cells are new, corner cell has three neighbours)")
(is (nil? (apply afn (list {:x 1 :y 1} world)))
"Middle cell has eight neighbours, so rule does not fire."))
(let [afn (compile-rule "if 3 neighbours is new then state should be water")
world (make-world 3 3)]
;; 'are new' and 'is new' should be the same as 'have state equal to new'
(is (= (apply afn (list {:x 0 :y 0} world))
{:state :water :x 0 :y 0})
"Rule fires when condition is met (in a new world all cells are new, corner cell has three neighbours)")
(is (nil? (apply afn (list {:x 1 :y 1} world)))
"Middle cell has eight neighbours, so rule does not fire.")))
(testing "Number neighbours have property more than numeric-value"
(let [afn (compile-rule "if 3 neighbours have altitude more than 10 then state should be beach")
world (transform-world
(make-world 3 3)
(list (compile-rule "if x is 2 then altitude should be 11")
(compile-rule "if x is less than 2 then altitude should be 0")))]
(is (= (:state (apply afn (list {:x 1 :y 1} world))) :beach)
"Rule fires when condition is met (strip of altitude 11 down right hand side)")
(is (nil? (apply afn (list {:x 2 :y 1} world)))
"Middle cell of the strip has only two high neighbours, so rule should not fire.")))
(testing "Number neighbours have property less than numeric-value"
(let [afn (compile-rule "if 5 neighbours have altitude less than 10 then state should be beach")
world (transform-world
(make-world 3 3)
(list (compile-rule "if x is 2 then altitude should be 11")
(compile-rule "if x is less than 2 then altitude should be 0")))]
(is (= (:state (apply afn (list {:x 1 :y 1} world))) :beach)
"Rule fires when condition is met (strip of altitude 11 down right hand side)")
(is (nil? (apply afn (list {:x 2 :y 1} world)))
"Middle cell of the strip has two high neighbours, so rule should not fire.")))
(testing "More than number neighbours have property equal to numeric-value"
(let [afn (compile-rule "if more than 2 neighbours have altitude equal to 11 then state should be beach")
world (transform-world
(make-world 3 3)
(list (compile-rule "if x is 2 then altitude should be 11")
(compile-rule "if x is less than 2 then altitude should be 0")))]
(is (= (:state (apply afn (list {:x 1 :y 1} world))) :beach)
"Rule fires when condition is met (strip of altitude 11 down right hand side)")
(is (nil? (apply afn (list {:x 2 :y 1} world)))
"Middle cell of the strip has only two high neighbours, so rule should not fire.")))
(testing "More than number neighbours have property equal to symbolic-value"
(let [afn (compile-rule "if more than 2 neighbours have state equal to grassland then state should be beach")
world (transform-world
(make-world 3 3)
(list (compile-rule "if x is 2 then altitude should be 11 and state should be grassland")
(compile-rule "if x is less than 2 then altitude should be 0 and state should be water")))]
(is (= (:state (apply afn (list {:x 1 :y 1} world))) :beach)
"Rule fires when condition is met (strip of altitude 11 down right hand side)")
(is (nil? (apply afn (list {:x 2 :y 1} world)))
"Middle cell of the strip has only two high neighbours, so rule should not fire."))
(let [afn (compile-rule "if more than 2 neighbours are grassland then state should be beach")
;; 'are grassland' should mean the same as 'have state equal to grassland'.
world (transform-world
(make-world 3 3)
(list (compile-rule "if x is 2 then altitude should be 11 and state should be grassland")
(compile-rule "if x is less than 2 then altitude should be 0 and state should be water")))]
(is (= (:state (apply afn (list {:x 1 :y 1} world))) :beach)
"Rule fires when condition is met (strip of altitude 11 down right hand side)")
(is (nil? (apply afn (list {:x 2 :y 1} world)))
"Middle cell of the strip has only two high neighbours, so rule should not fire."))
)
(testing "Fewer than number neighbours have property equal to numeric-value"
(let [afn (compile-rule "if fewer than 3 neighbours have altitude equal to 11 then state should be beach")
world (transform-world
(make-world 3 3)
(list (compile-rule "if x is 2 then altitude should be 11")
(compile-rule "if x is less than 2 then altitude should be 0")))]
(is (= (:state (apply afn (list {:x 2 :y 1} world))) :beach)
"Rule fires when condition is met (Middle cell of the strip has only two high neighbours)")
(is (nil? (apply afn (list {:x 1 :y 1} world)))
"Middle cell of world has three high neighbours, so rule should not fire.")))
(testing "Fewer than number neighbours have property equal to symbolic-value"
(let [afn (compile-rule "if fewer than 3 neighbours have state equal to grassland then state should be beach")
world (transform-world
(make-world 3 3)
(list (compile-rule "if x is 2 then altitude should be 11 and state should be grassland")
(compile-rule "if x is less than 2 then altitude should be 0 and state should be water")))]
(is (= (:state (apply afn (list {:x 2 :y 1} world))) :beach)
"Rule fires when condition is met (Middle cell of the strip has only two high neighbours)")
(is (nil? (apply afn (list {:x 1 :y 1} world)))
"Middle cell of world has three high neighbours, so rule should not fire.")))
;; some neighbours have property equal to value
(testing "Some neighbours have property equal to numeric-value"
(let [afn (compile-rule "if some neighbours have altitude equal to 11 then state should be beach")
world (transform-world
(make-world 3 3)
(list (compile-rule "if x is 2 then altitude should be 11")
(compile-rule "if x is less than 2 then altitude should be 0")))]
(is (= (:state (apply afn (list {:x 1 :y 1} world))) :beach)
"Rule fires when condition is met (strip of altitude 11 down right hand side)")
(is (nil? (apply afn (list {:x 0 :y 1} world)))
"Left hand side of world has no high neighbours, so rule should not fire.")))
(testing "Some neighbours have property equal to symbolic-value"
(let [afn (compile-rule "if some neighbours have state equal to grassland then state should be beach")
world (transform-world
(make-world 3 3)
(list (compile-rule "if x is 2 then altitude should be 11 and state should be grassland")
(compile-rule "if x is less than 2 then altitude should be 0 and state should be water")))]
(is (= (:state (apply afn (list {:x 1 :y 1} world))) :beach)
"Rule fires when condition is met (strip of altitude 11 down right hand side)")
(is (nil? (apply afn (list {:x 0 :y 1} world)))
"Left hand side of world has no high neighbours, so rule should not fire.")))
;; more than number neighbours have property more than numeric-value
(testing "More than number neighbours have property more than symbolic-value"
(let [afn (compile-rule "if more than 2 neighbours have altitude more than 10 then state should be beach")
world (transform-world
(make-world 3 3)
(list (compile-rule "if x is 2 then altitude should be 11 and state should be grassland")
(compile-rule "if x is less than 2 then altitude should be 0 and state should be water")))]
(is (= (:state (apply afn (list {:x 1 :y 1} world))) :beach)
"Rule fires when condition is met (strip of altitude 11 down right hand side)")
(is (nil? (apply afn (list {:x 2 :y 1} world)))
"Middle cell of the strip has only two high neighbours, so rule should not fire.")))
;; fewer than number neighbours have property more than numeric-value
(testing "Fewer than number neighbours have property more than numeric-value"
(let [afn (compile-rule "if fewer than 3 neighbours have altitude more than 10 then state should be beach")
world (transform-world
(make-world 3 3)
(list (compile-rule "if x is 2 then altitude should be 11")
(compile-rule "if x is less than 2 then altitude should be 0")))]
(is (= (:state (apply afn (list {:x 2 :y 1} world))) :beach)
"Rule fires when condition is met (Middle cell of the strip has only two high neighbours)")
(is (nil? (apply afn (list {:x 1 :y 1} world)))
"Middle cell of world has three high neighbours, so rule should not fire.")))
;; some neighbours have property more than numeric-value
(testing "Some neighbours have property more than numeric-value"
(let [afn (compile-rule "if some neighbours have altitude more than 10 then state should be beach")
world (transform-world
(make-world 3 3)
(list (compile-rule "if x is 2 then altitude should be 11")
(compile-rule "if x is less than 2 then altitude should be 0")))]
(is (= (:state (apply afn (list {:x 1 :y 1} world))) :beach)
"Rule fires when condition is met (strip of altitude 11 down right hand side)")
(is (nil? (apply afn (list {:x 0 :y 1} world)))
"Left hand side of world has no high neighbours, so rule should not fire.")))
;; more than number neighbours have property less than numeric-value
(testing "More than number neighbours have property less than numeric-value"
(let [afn (compile-rule "if more than 4 neighbours have altitude less than 10 then state should be beach")
world (transform-world
(make-world 3 3)
(list (compile-rule "if x is 2 then altitude should be 11")
(compile-rule "if x is less than 2 then altitude should be 0")))]
(is (= (:state (apply afn (list {:x 1 :y 1} world))) :beach)
"Rule fires when condition is met (strip of altitude 11 down right hand side)")
(is (nil? (apply afn (list {:x 2 :y 1} world)))
"Middle cell of the strip has only three low neighbours, so rule should not fire.")))
;; fewer than number neighbours have property less than numeric-value
(testing "Fewer than number neighbours have property less than numeric-value"
(let [afn (compile-rule "if fewer than 4 neighbours have altitude less than 10 then state should be beach")
world (transform-world
(make-world 3 3)
(list (compile-rule "if x is 2 then altitude should be 11")
(compile-rule "if x is less than 2 then altitude should be 0")))]
(is (nil? (apply afn (list {:x 1 :y 1} world)))
"Centre cell has five low neighbours, so rule should not fire")
(is (= (:state (apply afn (list {:x 2 :y 1} world))) :beach)
"Middle cell of the strip has only three low neighbours, so rule should fire.")))
;; some neighbours have property less than numeric-value
(testing "Some number neighbours have property less than numeric-value"
(let [afn (compile-rule "if some neighbours have altitude less than 10 then state should be beach")
world (transform-world
(make-world 3 3)
(list (compile-rule "if x is less than 2 then altitude should be 11")
(compile-rule "if x is 2 then altitude should be 0")))]
(is (= (:state (apply afn (list {:x 1 :y 1} world))) :beach)
"Rule fires when condition is met (strip of altitude 0 down right hand side)")
(is (nil? (apply afn (list {:x 0 :y 1} world)))
"Left of world is all high, so rule should not fire.")))
;; 'single action' already tested in 'condition' tests above
;; action and actions
(testing "Conjunction of actions"
(let [afn (compile-rule "if state is new then state should be grassland and fertility should be 0")]
(is (= (apply afn (list {:state :new} nil))
{:state :grassland :fertility 0})
"Both actions are executed")))
;; 'property should be symbolic-value' and 'property should be numeric-value'
;; already tested in tests above
;; number chance in number property should be value
(testing "Syntax of probability rule - action of real probability very hard to test"
(let [afn (compile-rule "if state is forest then 5 chance in 5 state should be climax")]
(is (= (:state (apply afn (list {:state :forest} nil))) :climax)
"five chance in five should fire every time"))
(let [afn (compile-rule "if state is forest then 0 chance in 5 state should be climax")]
(is (nil? (apply afn (list {:state :forest} nil)))
"zero chance in five should never fire")))
;; property operator numeric-value
(testing "Arithmetic action: addition of number"
(let [afn (compile-rule "if state is climax then fertility should be fertility + 1")]
(is (= (:fertility
(apply afn (list {:state :climax :fertility 0} nil)))
1)
"Addition is executed")))
(testing "Arithmetic action: addition of property value"
(let [afn (compile-rule "if state is climax then fertility should be fertility + leaf-fall")]
(is (= (:fertility
(apply afn
(list {:state :climax
:fertility 0
:leaf-fall 1} nil)))
1)
"Addition is executed")))
(testing "Arithmetic action: subtraction of number"
(let [afn (compile-rule "if state is crop then fertility should be fertility - 1")]
(is (= (:fertility
(apply afn (list {:state :crop :fertility 2} nil)))
1)
"Action is executed")))
(testing "Arithmetic action: subtraction of property value"
(let [afn (compile-rule "if wolves are more than 0 then deer should be deer - wolves")]
(is (= (:deer
(apply afn
(list {:deer 3
:wolves 2} nil)))
1)
"Action is executed")))
(testing "Arithmetic action: multiplication by number"
(let [afn (compile-rule "if deer are more than 1 then deer should be deer * 2")]
(is (= (:deer
(apply afn (list {:deer 2} nil)))
4)
"Action is executed")))
(testing "Arithmetic action: multiplication by property value"
(let [afn (compile-rule "if state is crop then deer should be deer * deer")]
(is (= (:deer
(apply afn
(list {:state :crop :deer 2} nil)))
4)
"Action is executed")))
(testing "Arithmetic action: division by number"
(let [afn (compile-rule "if wolves are more than 0 then deer should be deer / 2")]
(is (= (:deer
(apply afn (list {:deer 2 :wolves 1} nil)))
1)
"Action is executed")))
(testing "Arithmetic action: division by property value"
(let [afn (compile-rule "if wolves are more than 0 then deer should be deer / wolves")]
(is (= (:deer
(apply afn
(list {:deer 2 :wolves 2} nil)))
1)
"Action is executed")))
;; simple within distance
(testing "Number neighbours within distance have property equal to value"
(let [afn (compile-rule "if 8 neighbours within 2 have state equal to new then state should be water")
world (make-world 5 5)]
(is (= (apply afn (list {:x 0 :y 0} world))
{:state :water :x 0 :y 0})
"Rule fires when condition is met (in a new world all cells are new, corner cell has eight neighbours within two)")
(is (nil? (apply afn (list {:x 1 :y 1} world)))
"Middle cell has twenty-four neighbours within two, so rule does not fire.")))
;; comparator within distance
(testing "More than number neighbours within distance have property equal to symbolic-value"
(let [afn (compile-rule "if more than 7 neighbours within 2 have state equal to grassland and more than 7 neighbours within 2 have state equal to water then state should be beach")
;; 5x5 world, strip of high ground two cells wide down left hand side
;; xxooo
;; xxooo
;; xxooo
;; xxooo
;; xxooo
world (transform-world
(make-world 5 5)
(list (compile-rule "if x is less than 2 then altitude should be 11 and state should be grassland")
(compile-rule "if x is more than 1 then altitude should be 0 and state should be water")))]
(is (= (:state (apply afn (list {:x 2 :y 2} world))) :beach)
"Rule fires when condition is met (strip of altitude 11 down right hand side)")
(is (nil? (apply afn (list {:x 0 :y 1} world)))
"Middle cell of the strip has only two high neighbours, so rule should not fire."))
))