Added the new declarative parser.
This commit is contained in:
		
							parent
							
								
									3dbda68cd7
								
							
						
					
					
						commit
						2c567a65f1
					
				
							
								
								
									
										358
									
								
								src/cljs/mw3/parser.cljs
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										358
									
								
								src/cljs/mw3/parser.cljs
									
									
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,358 @@ | |||
| (ns mw-parser.declarative | ||||
|   (:use mw-engine.utils | ||||
|         [clojure.string :only [split trim triml]]) | ||||
|   (:require [instaparse.core :as insta])) | ||||
| 
 | ||||
| 
 | ||||
| ;; error thrown when an attempt is made to set a reserved property | ||||
| (def reserved-properties-error | ||||
|   "The properties 'x' and 'y' of a cell are reserved and should not be set in rule actions") | ||||
| ;; error thrown when a rule cannot be parsed. Slots are for | ||||
| ;; (1) rule text | ||||
| ;; (2) cursor showing where in the rule text the error occurred | ||||
| ;; (3) the reason for the error | ||||
| (def bad-parse-error "I did not understand:\n'%s'\n%s\n%s") | ||||
| 
 | ||||
| 
 | ||||
| (def grammar | ||||
|   ;; in order to simplify translation into other natural languages, all | ||||
|   ;; TOKENS within the parser should be unambiguous | ||||
|   "RULE := IF SPACE CONDITIONS SPACE THEN SPACE ACTIONS; | ||||
|    CONDITIONS := DISJUNCT-CONDITION | CONJUNCT-CONDITION | PROPERTY-CONDITION | NEIGHBOURS-CONDITION ; | ||||
|    DISJUNCT-CONDITION := CONDITION SPACE OR SPACE CONDITIONS; | ||||
|    CONJUNCT-CONDITION := CONDITION SPACE AND SPACE CONDITIONS; | ||||
|    CONDITION := NEIGHBOURS-CONDITION | PROPERTY-CONDITION; | ||||
|    WITHIN-CONDITION := NEIGHBOURS-CONDITION SPACE WITHIN SPACE NUMERIC-EXPRESSION; | ||||
|    NEIGHBOURS-CONDITION := WITHIN-CONDITION | QUANTIFIER SPACE NEIGHBOURS SPACE IS SPACE PROPERTY-CONDITION | QUANTIFIER SPACE NEIGHBOURS IS EXPRESSION | QUALIFIER SPACE NEIGHBOURS-CONDITION; | ||||
|    PROPERTY-CONDITION := PROPERTY SPACE QUALIFIER SPACE EXPRESSION; | ||||
|    EXPRESSION := SIMPLE-EXPRESSION | RANGE-EXPRESSION | NUMERIC-EXPRESSION | DISJUNCT-EXPRESSION | VALUE; | ||||
|    SIMPLE-EXPRESSION := QUALIFIER SPACE EXPRESSION | VALUE; | ||||
|    DISJUNCT-EXPRESSION := IN SPACE DISJUNCT-VALUE; | ||||
|    RANGE-EXPRESSION := BETWEEN SPACE NUMERIC-EXPRESSION SPACE AND SPACE NUMERIC-EXPRESSION; | ||||
|    NUMERIC-EXPRESSION := VALUE | VALUE SPACE OPERATOR SPACE NUMERIC-EXPRESSION; | ||||
|    NEGATED-QUALIFIER := QUALIFIER SPACE NOT | NOT SPACE QUALIFIER; | ||||
|    COMPARATIVE-QUALIFIER := IS SPACE COMPARATIVE SPACE THAN; | ||||
|    QUALIFIER := COMPARATIVE-QUALIFIER | NEGATED-QUALIFIER | EQUIVALENCE | IS SPACE QUALIFIER; | ||||
|    QUANTIFIER := NUMBER | SOME | NONE | ALL | COMPARATIVE SPACE THAN SPACE NUMBER; | ||||
|    EQUIVALENCE := IS SPACE EQUAL | EQUAL | IS ; | ||||
|    COMPARATIVE := MORE | LESS; | ||||
|    DISJUNCT-VALUE := VALUE | VALUE SPACE OR SPACE DISJUNCT-VALUE; | ||||
|    IF := 'if'; | ||||
|    THEN := 'then'; | ||||
|    THAN := 'than'; | ||||
|    OR := 'or'; | ||||
|    NOT := 'not'; | ||||
|    AND := 'and'; | ||||
|    SOME := 'some'; | ||||
|    NONE := 'no'; | ||||
|    ALL := 'all' | ||||
|    BETWEEN := 'between'; | ||||
|    WITHIN := 'within'; | ||||
|    IN := 'in'; | ||||
|    MORE := 'more'; | ||||
|    LESS := 'less' | 'fewer'; | ||||
|    OPERATOR := '+' | '-' | '*' | '/'; | ||||
|    NEIGHBOURS := 'neighbour' | 'neighbor' | 'neighbours' | 'neighbors'; | ||||
|    PROPERTY := SYMBOL; | ||||
|    VALUE := SYMBOL | NUMBER; | ||||
|    EQUAL := 'equal to'; | ||||
|    IS := 'is' | 'are' | 'have' | 'has'; | ||||
|    NUMBER := #'[0-9]+' | #'[0-9]+.[0-9]+'; | ||||
|    SYMBOL := #'[a-z]+'; | ||||
|    ACTIONS := ACTION | ACTION SPACE 'and' SPACE ACTIONS | ||||
|    ACTION := SIMPLE-ACTION | PROBABLE-ACTION; | ||||
|    PROBABLE-ACTION := VALUE SPACE 'chance in' SPACE VALUE SPACE SIMPLE-ACTION; | ||||
|    SIMPLE-ACTION := SYMBOL SPACE BECOMES SPACE EXPRESSION | ||||
|    BECOMES := 'should be' | ||||
|    SPACE := #' *'" | ||||
|   ) | ||||
| 
 | ||||
| (defn TODO | ||||
|   "Marker to indicate I'm not yet finished!" | ||||
|   [message] | ||||
|   message) | ||||
| 
 | ||||
| 
 | ||||
| (declare generate simplify) | ||||
| 
 | ||||
| (defn suitable-fragment? | ||||
|   "Return `true` if `tree-fragment` appears to be a tree fragment of the expected `type`." | ||||
|   [tree-fragment type] | ||||
|   (and (coll? tree-fragment)(= (first tree-fragment) type))) | ||||
| 
 | ||||
| (defn assert-type | ||||
|   "If `tree-fragment` is not a tree fragment of the expected `type`, throw an exception." | ||||
|   [tree-fragment type] | ||||
|   (assert (suitable-fragment? tree-fragment type) | ||||
|           (throw (Exception. (format "Expected a %s fragment" type))))) | ||||
| 
 | ||||
| (defn generate-rule | ||||
|   "From this `tree`, assumed to be a syntactically correct rule specification, | ||||
|   generate and return the appropriate rule as a function of two arguments." | ||||
|   [tree] | ||||
|   (assert-type tree :RULE) | ||||
|   (list 'fn ['cell 'world] (list 'if (generate (nth tree 2)) (generate (nth tree 3))))) | ||||
| 
 | ||||
| (defn generate-conditions | ||||
|   "From this `tree`, assumed to be a syntactically correct conditions clause, | ||||
|   generate and return the appropriate clojure fragment." | ||||
|   [tree] | ||||
|   (assert-type tree :CONDITIONS) | ||||
|   (generate (nth tree 1))) | ||||
| 
 | ||||
| (defn generate-condition | ||||
|   [tree] | ||||
|   (assert-type tree :CONDITION) | ||||
|   (generate (nth tree 1))) | ||||
| 
 | ||||
| (defn generate-conjunct-condition | ||||
|   [tree] | ||||
|   (assert-type tree :CONJUNCT-CONDITION) | ||||
|   (list 'and (generate (nth tree 1))(generate (nth tree 3)))) | ||||
| 
 | ||||
| (defn generate-disjunct-condition | ||||
|   [tree] | ||||
|   (assert-type tree :DISJUNCT-CONDITION) | ||||
|   (list 'or (generate (nth tree 1))(generate (nth tree 3)))) | ||||
| 
 | ||||
| (defn generate-ranged-property-condition | ||||
|   "Generate a property condition where the expression is a numeric range" | ||||
|   [tree property expression] | ||||
|   (assert-type tree :PROPERTY-CONDITION) | ||||
|   (assert-type (nth tree 3) :RANGE-EXPRESSION) | ||||
|   (let [l1 (generate (nth expression 2)) | ||||
|         l2 (generate (nth expression 4)) | ||||
|         pv (list property 'cell)] | ||||
|     (list 'let ['lower (list 'min l1 l2) | ||||
|                 'upper (list 'max l1 l2)] | ||||
|           (list 'and (list '>= pv 'lower)(list '<= pv 'upper))))) | ||||
| 
 | ||||
| (defn generate-disjunct-condition | ||||
|   "Generate a property condition where the expression is a disjunct expression" | ||||
|   [tree property qualifier expression] | ||||
|   (let [e (list 'some (list 'fn ['i] '(= i value)) (list 'quote expression))] | ||||
|     (list 'let ['value (list property 'cell)] | ||||
|           (if (= qualifier '=) e | ||||
|             (list 'not e))))) | ||||
| 
 | ||||
| (defn generate-property-condition | ||||
|   ([tree] | ||||
|    (assert-type tree :PROPERTY-CONDITION) | ||||
|    (generate-property-condition tree (first (nth tree 3)))) | ||||
|   ([tree expression-type] | ||||
|    (assert-type tree :PROPERTY-CONDITION) | ||||
|    (let [property (generate (nth tree 1)) | ||||
|          qualifier (generate (nth tree 2)) | ||||
|          expression (generate (nth tree 3))] | ||||
|      (case expression-type | ||||
|        :DISJUNCT-EXPRESSION (generate-disjunct-condition tree property qualifier expression) | ||||
|        :RANGE-EXPRESSION (generate-ranged-property-condition tree property expression) | ||||
|        (list qualifier (list property 'cell) expression))))) | ||||
| 
 | ||||
| (defn generate-simple-action | ||||
|   [tree] | ||||
|   (assert-type tree :SIMPLE-ACTION) | ||||
|   (let [property (generate (nth tree 1)) | ||||
|         expression (generate (nth tree 3))] | ||||
|     (if (or (= property :x) (= property :y)) | ||||
|       (throw (Exception. reserved-properties-error)) | ||||
|       (list 'merge 'cell {property expression})))) | ||||
| 
 | ||||
| (defn generate-multiple-actions | ||||
|    [tree] | ||||
|   nil) | ||||
| ;;   (assert (and (coll? tree)(= (first tree) :ACTIONS)) "Expected an ACTIONS fragment") | ||||
| ;;   (conj 'do (map | ||||
| 
 | ||||
| (defn generate-disjunct-value | ||||
|   "Generate a disjunct value. Essentially what we need here is to generate a | ||||
|   flat list of values, since the `member` has already been taken care of." | ||||
|   [tree] | ||||
|   (assert-type tree :DISJUNCT-VALUE) | ||||
|   (if (= (count tree) 4) | ||||
|     (cons (generate (second tree)) (generate (nth tree 3))) | ||||
|     (list (generate (second tree))))) | ||||
| 
 | ||||
| (defn generate-numeric-expression | ||||
|   [tree] | ||||
|   (assert-type tree :NUMERIC-EXPRESSION) | ||||
|   (case (first (second tree)) | ||||
|     :SYMBOL (list (keyword (second (second tree))) 'cell) | ||||
|     (generate (second tree)))) | ||||
| 
 | ||||
| (defn generate-neighbours-condition | ||||
|   "Generate code for a condition which refers to neighbours." | ||||
|   ([tree] | ||||
|    (generate-neighbours-condition tree (first (second tree)))) | ||||
|   ([tree quantifier-type] | ||||
|    (let [quantifier (second (second tree)) | ||||
|          pc (generate (nth tree 4))] | ||||
|      (case quantifier-type | ||||
|        :NUMBER (generate-neighbours-condition '= (read-string quantifier) pc 1) | ||||
|        :SOME (generate-neighbours-condition '> 0 pc 1) | ||||
|        :QUANTIFIER | ||||
|        (let [comparative (generate (simplify (second quantifier))) | ||||
|              value (simplify (nth quantifier 5))] | ||||
|          (generate-neighbours-condition comparative value pc 1))))) | ||||
|   ([comp1 quantity property-condition distance] | ||||
|    (list comp1 | ||||
|          (list 'count (list 'remove false (list 'map (list 'fn ['cell] property-condition) '(get-neighbours cell world distance)))) quantity)) | ||||
|   ([comp1 quantity property-condition] | ||||
|    (generate-neighbours-condition comp1 quantity property-condition 1))) | ||||
| 
 | ||||
| ;; (def s1 "if 3 neighbours have state equal to forest then state should be forest") | ||||
| ;; (def s2 "if some neighbours have state equal to forest then state should be forest") | ||||
| ;; (def s3 "if more than 3 neighbours have state equal to forest then state should be forest") | ||||
| ;; (def s4 "if fewer than 3 neighbours have state equal to forest then state should be forest") | ||||
| ;; (def s5 "if all neighbours have state equal to forest then state should be forest") | ||||
| ;; (def s6 "if more than 3 neighbours within 2 have state equal to forest then state should be forest") | ||||
| 
 | ||||
| ;; (nth (simplify (parse-rule s1)) 2) | ||||
| ;; (second (nth (simplify (parse-rule s1)) 2)) | ||||
| ;; (nth (simplify (parse-rule s2)) 2) | ||||
| ;; (map simplify (nth (simplify (parse-rule s2)) 2)) | ||||
| ;; ;; (second (nth (simplify (parse-rule s2)) 2)) | ||||
| ;; ;; (nth (simplify (parse-rule s3)) 2) | ||||
| ;; (second (nth (simplify (parse-rule s3)) 2)) | ||||
| ;; (map simplify (second (nth (simplify (parse-rule s3)) 2))) | ||||
| ;; ;; (nth (simplify (parse-rule s4)) 2) | ||||
| ;; ;; (second (nth (simplify (parse-rule s4)) 2)) | ||||
| ;; ;; (nth (simplify (parse-rule s5)) 2) | ||||
| ;; ;; (second (nth (simplify (parse-rule s5)) 2)) | ||||
| ;; ;; (nth (simplify (parse-rule s6)) 2) | ||||
| ;; ;; (second (nth (simplify (parse-rule s6)) 2)) | ||||
| 
 | ||||
| ;; ;; (generate (nth (nth (simplify (parse-rule s5)) 2) 4)) | ||||
| ;; ;; (generate (nth (simplify (parse-rule s2)) 2)) | ||||
| ;; ;; (generate (nth (simplify (parse-rule s1)) 2)) | ||||
| 
 | ||||
| 
 | ||||
| ;; (generate-neighbours-condition '= 3 '(= (:state cell) :forest) 1) | ||||
| ;; (generate-neighbours-condition (nth (simplify (parse-rule s3)) 2)) | ||||
| ;; (generate-neighbours-condition (nth (simplify (parse-rule s2)) 2)) | ||||
| ;; (generate-neighbours-condition (nth (simplify (parse-rule s1)) 2)) | ||||
| 
 | ||||
| 
 | ||||
| (defn generate | ||||
|   "Generate code for this (fragment of a) parse tree" | ||||
|   [tree] | ||||
|   (if | ||||
|     (coll? tree) | ||||
|     (case (first tree) | ||||
|       :ACTIONS (generate-multiple-actions tree) | ||||
|       :COMPARATIVE (generate (second tree)) | ||||
|       :COMPARATIVE-QUALIFIER (generate (nth tree 2)) | ||||
|       :CONDITION (generate-condition tree) | ||||
|       :CONDITIONS (generate-conditions tree) | ||||
|       :CONJUNCT-CONDITION (generate-conjunct-condition tree) | ||||
|       :DISJUNCT-CONDITION (generate-disjunct-condition tree) | ||||
|       :DISJUNCT-EXPRESSION (generate (nth tree 2)) | ||||
|       :DISJUNCT-VALUE (generate-disjunct-value tree) | ||||
|       :EQUIVALENCE '= | ||||
|       :EXPRESSION (generate (second tree)) | ||||
|       :LESS '< | ||||
|       :MORE '> | ||||
|       :NEGATED-QUALIFIER (case (generate (second tree)) | ||||
|                                  = 'not= | ||||
|                                  > '< | ||||
|                                  < '>) | ||||
|       :NEIGHBOURS-CONDITION (generate-neighbours-condition tree) | ||||
|       :NUMERIC-EXPRESSION (generate-numeric-expression tree) | ||||
|       :NUMBER (read-string (second tree)) | ||||
|       :PROPERTY (list (generate (second tree)) 'cell) ;; dubious - may not be right | ||||
|       :PROPERTY-CONDITION (generate-property-condition tree) | ||||
|       :QUALIFIER (generate (second tree)) | ||||
|       :RULE (generate-rule tree) | ||||
|       :SIMPLE-ACTION (generate-simple-action tree) | ||||
|       :SYMBOL (keyword (second tree)) | ||||
|       :VALUE (generate (second tree)) | ||||
|       (map generate tree)) | ||||
|     tree)) | ||||
| 
 | ||||
| 
 | ||||
| (defn simplify-qualifier | ||||
|   "Given that this `tree` fragment represents a qualifier, what | ||||
|    qualifier is that?" | ||||
|   [tree] | ||||
|   (cond | ||||
|     (empty? tree) nil | ||||
|     (and (coll? tree) | ||||
|          (member? (first tree) '(:EQUIVALENCE :COMPARATIVE))) tree | ||||
|     (coll? (first tree)) (or (simplify-qualifier (first tree)) | ||||
|                              (simplify-qualifier (rest tree))) | ||||
|     (coll? tree) (simplify-qualifier (rest tree)) | ||||
|     true tree)) | ||||
| 
 | ||||
| (defn simplify-second-of-two | ||||
|   "There are a number of possible simplifications such that if the `tree` has | ||||
|    only two elements, the second is semantically sufficient." | ||||
|   [tree] | ||||
|   (if (= (count tree) 2) (simplify (nth tree 1)) tree)) | ||||
| 
 | ||||
| 
 | ||||
| (defn rule? | ||||
|   "Return true if the argument appears to be a parsed rule tree, else false." | ||||
|   [maybe-rule] | ||||
|   (and (coll? maybe-rule) (= (first maybe-rule) :RULE))) | ||||
| 
 | ||||
| (defn simplify | ||||
|   "Simplify/canonicalise this `tree`. Opportunistically replace complex fragments with | ||||
|   semantically identical simpler fragments" | ||||
|   [tree] | ||||
|   (if | ||||
|     (coll? tree) | ||||
|     (case (first tree) | ||||
|       :ACTION (simplify-second-of-two tree) | ||||
|       :ACTIONS (simplify-second-of-two tree) | ||||
|       :COMPARATIVE (simplify-second-of-two tree) | ||||
|       :CONDITION (simplify-second-of-two tree) | ||||
|       :CONDITIONS (simplify-second-of-two tree) | ||||
|       :EXPRESSION (simplify-second-of-two tree) | ||||
| ;;      :QUANTIFIER (simplify-second-of-two tree) | ||||
|       :NOT nil | ||||
|       :PROPERTY (simplify-second-of-two tree) | ||||
|       :SPACE nil | ||||
|       :THEN nil | ||||
|       ;; :QUALIFIER (simplify-qualifier tree) | ||||
|       :VALUE (simplify-second-of-two tree) | ||||
|       (remove nil? (map simplify tree))) | ||||
|     tree)) | ||||
| 
 | ||||
| (def parse-rule | ||||
|   "Parse the argument, assumed to be a string in the correct syntax, and return a parse tree." | ||||
|   (insta/parser grammar)) | ||||
| 
 | ||||
| (defn explain-parse-error-reason | ||||
|   "Attempt to explain the reason for the parse error." | ||||
|   [reason] | ||||
|   (str "Expecting one of (" (apply str (map #(str (:expecting %) " ") (first reason))) ")")) | ||||
| 
 | ||||
| (defn throw-parse-exception | ||||
|   "Construct a helpful error message from this `parser-error`, and throw an exception with that message." | ||||
|   [parser-error] | ||||
|   (assert (coll? parser-error) "Expected a paser error structure?") | ||||
|   (let | ||||
|     [ | ||||
|       ;; the error structure is a list, such that each element is a list of two items, and | ||||
|       ;; the first element in each sublist is a keyword. Easier to work with it as a map | ||||
|      error-map (reduce (fn [map item](merge map {(first item)(rest item)})) {} parser-error) | ||||
|      text (first (:text error-map)) | ||||
|      reason (explain-parse-error-reason (:reason error-map)) | ||||
|       ;; rules have only one line, by definition; we're interested in the column | ||||
|      column (if (:column error-map)(first (:column error-map)) 0) | ||||
|       ;; create a cursor to point to that column | ||||
|      cursor (apply str (reverse (conj (repeat column " ") "^"))) | ||||
|      message (format bad-parse-error text cursor reason) | ||||
|      ] | ||||
|   (throw (Exception. message)))) | ||||
| 
 | ||||
| (defn compile-rule | ||||
|   "Compile this `rule`, assumed to be a string with appropriate syntax, into a function of two arguments, | ||||
|   a `cell` and a `world`, having the same semantics." | ||||
|   [rule] | ||||
|   (assert (string? rule)) | ||||
|   (let [tree (simplify (parse-rule rule))] | ||||
|     (if (rule? tree) (eval (generate tree)) | ||||
|       (throw-parse-exception tree)))) | ||||
| 
 | ||||
| 
 | ||||
		Loading…
	
		Reference in a new issue