Added compiled JavaScript to repository for GitHub pages

This feels like a mistake...
This commit is contained in:
Simon Brooke 2020-10-20 14:44:11 +01:00
parent 3d5a2fb322
commit dc226b1f25
468 changed files with 212152 additions and 2 deletions

View file

@ -0,0 +1,268 @@
// Copyright 2006 The Closure Library Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS-IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/**
* @fileoverview A utility class for representing two-dimensional positions.
*/
goog.provide('goog.math.Coordinate');
goog.require('goog.math');
/**
* Class for representing coordinates and positions.
* @param {number=} opt_x Left, defaults to 0.
* @param {number=} opt_y Top, defaults to 0.
* @struct
* @constructor
*/
goog.math.Coordinate = function(opt_x, opt_y) {
/**
* X-value
* @type {number}
*/
this.x = goog.isDef(opt_x) ? opt_x : 0;
/**
* Y-value
* @type {number}
*/
this.y = goog.isDef(opt_y) ? opt_y : 0;
};
/**
* Returns a new copy of the coordinate.
* @return {!goog.math.Coordinate} A clone of this coordinate.
*/
goog.math.Coordinate.prototype.clone = function() {
return new goog.math.Coordinate(this.x, this.y);
};
if (goog.DEBUG) {
/**
* Returns a nice string representing the coordinate.
* @return {string} In the form (50, 73).
* @override
*/
goog.math.Coordinate.prototype.toString = function() {
return '(' + this.x + ', ' + this.y + ')';
};
}
/**
* Compares coordinates for equality.
* @param {goog.math.Coordinate} a A Coordinate.
* @param {goog.math.Coordinate} b A Coordinate.
* @return {boolean} True iff the coordinates are equal, or if both are null.
*/
goog.math.Coordinate.equals = function(a, b) {
if (a == b) {
return true;
}
if (!a || !b) {
return false;
}
return a.x == b.x && a.y == b.y;
};
/**
* Returns the distance between two coordinates.
* @param {!goog.math.Coordinate} a A Coordinate.
* @param {!goog.math.Coordinate} b A Coordinate.
* @return {number} The distance between {@code a} and {@code b}.
*/
goog.math.Coordinate.distance = function(a, b) {
var dx = a.x - b.x;
var dy = a.y - b.y;
return Math.sqrt(dx * dx + dy * dy);
};
/**
* Returns the magnitude of a coordinate.
* @param {!goog.math.Coordinate} a A Coordinate.
* @return {number} The distance between the origin and {@code a}.
*/
goog.math.Coordinate.magnitude = function(a) {
return Math.sqrt(a.x * a.x + a.y * a.y);
};
/**
* Returns the angle from the origin to a coordinate.
* @param {!goog.math.Coordinate} a A Coordinate.
* @return {number} The angle, in degrees, clockwise from the positive X
* axis to {@code a}.
*/
goog.math.Coordinate.azimuth = function(a) {
return goog.math.angle(0, 0, a.x, a.y);
};
/**
* Returns the squared distance between two coordinates. Squared distances can
* be used for comparisons when the actual value is not required.
*
* Performance note: eliminating the square root is an optimization often used
* in lower-level languages, but the speed difference is not nearly as
* pronounced in JavaScript (only a few percent.)
*
* @param {!goog.math.Coordinate} a A Coordinate.
* @param {!goog.math.Coordinate} b A Coordinate.
* @return {number} The squared distance between {@code a} and {@code b}.
*/
goog.math.Coordinate.squaredDistance = function(a, b) {
var dx = a.x - b.x;
var dy = a.y - b.y;
return dx * dx + dy * dy;
};
/**
* Returns the difference between two coordinates as a new
* goog.math.Coordinate.
* @param {!goog.math.Coordinate} a A Coordinate.
* @param {!goog.math.Coordinate} b A Coordinate.
* @return {!goog.math.Coordinate} A Coordinate representing the difference
* between {@code a} and {@code b}.
*/
goog.math.Coordinate.difference = function(a, b) {
return new goog.math.Coordinate(a.x - b.x, a.y - b.y);
};
/**
* Returns the sum of two coordinates as a new goog.math.Coordinate.
* @param {!goog.math.Coordinate} a A Coordinate.
* @param {!goog.math.Coordinate} b A Coordinate.
* @return {!goog.math.Coordinate} A Coordinate representing the sum of the two
* coordinates.
*/
goog.math.Coordinate.sum = function(a, b) {
return new goog.math.Coordinate(a.x + b.x, a.y + b.y);
};
/**
* Rounds the x and y fields to the next larger integer values.
* @return {!goog.math.Coordinate} This coordinate with ceil'd fields.
*/
goog.math.Coordinate.prototype.ceil = function() {
this.x = Math.ceil(this.x);
this.y = Math.ceil(this.y);
return this;
};
/**
* Rounds the x and y fields to the next smaller integer values.
* @return {!goog.math.Coordinate} This coordinate with floored fields.
*/
goog.math.Coordinate.prototype.floor = function() {
this.x = Math.floor(this.x);
this.y = Math.floor(this.y);
return this;
};
/**
* Rounds the x and y fields to the nearest integer values.
* @return {!goog.math.Coordinate} This coordinate with rounded fields.
*/
goog.math.Coordinate.prototype.round = function() {
this.x = Math.round(this.x);
this.y = Math.round(this.y);
return this;
};
/**
* Translates this box by the given offsets. If a {@code goog.math.Coordinate}
* is given, then the x and y values are translated by the coordinate's x and y.
* Otherwise, x and y are translated by {@code tx} and {@code opt_ty}
* respectively.
* @param {number|goog.math.Coordinate} tx The value to translate x by or the
* the coordinate to translate this coordinate by.
* @param {number=} opt_ty The value to translate y by.
* @return {!goog.math.Coordinate} This coordinate after translating.
*/
goog.math.Coordinate.prototype.translate = function(tx, opt_ty) {
if (tx instanceof goog.math.Coordinate) {
this.x += tx.x;
this.y += tx.y;
} else {
this.x += Number(tx);
if (goog.isNumber(opt_ty)) {
this.y += opt_ty;
}
}
return this;
};
/**
* Scales this coordinate by the given scale factors. The x and y values are
* scaled by {@code sx} and {@code opt_sy} respectively. If {@code opt_sy}
* is not given, then {@code sx} is used for both x and y.
* @param {number} sx The scale factor to use for the x dimension.
* @param {number=} opt_sy The scale factor to use for the y dimension.
* @return {!goog.math.Coordinate} This coordinate after scaling.
*/
goog.math.Coordinate.prototype.scale = function(sx, opt_sy) {
var sy = goog.isNumber(opt_sy) ? opt_sy : sx;
this.x *= sx;
this.y *= sy;
return this;
};
/**
* Rotates this coordinate clockwise about the origin (or, optionally, the given
* center) by the given angle, in radians.
* @param {number} radians The angle by which to rotate this coordinate
* clockwise about the given center, in radians.
* @param {!goog.math.Coordinate=} opt_center The center of rotation. Defaults
* to (0, 0) if not given.
*/
goog.math.Coordinate.prototype.rotateRadians = function(radians, opt_center) {
var center = opt_center || new goog.math.Coordinate(0, 0);
var x = this.x;
var y = this.y;
var cos = Math.cos(radians);
var sin = Math.sin(radians);
this.x = (x - center.x) * cos - (y - center.y) * sin + center.x;
this.y = (x - center.x) * sin + (y - center.y) * cos + center.y;
};
/**
* Rotates this coordinate clockwise about the origin (or, optionally, the given
* center) by the given angle, in degrees.
* @param {number} degrees The angle by which to rotate this coordinate
* clockwise about the given center, in degrees.
* @param {!goog.math.Coordinate=} opt_center The center of rotation. Defaults
* to (0, 0) if not given.
*/
goog.math.Coordinate.prototype.rotateDegrees = function(degrees, opt_center) {
this.rotateRadians(goog.math.toRadians(degrees), opt_center);
};

View file

@ -0,0 +1,807 @@
// Copyright 2009 The Closure Library Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS-IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/**
* @fileoverview Defines an Integer class for representing (potentially)
* infinite length two's-complement integer values.
*
* For the specific case of 64-bit integers, use goog.math.Long, which is more
* efficient.
*
*/
goog.provide('goog.math.Integer');
/**
* Constructs a two's-complement integer an array containing bits of the
* integer in 32-bit (signed) pieces, given in little-endian order (i.e.,
* lowest-order bits in the first piece), and the sign of -1 or 0.
*
* See the from* functions below for other convenient ways of constructing
* Integers.
*
* The internal representation of an integer is an array of 32-bit signed
* pieces, along with a sign (0 or -1) that indicates the contents of all the
* other 32-bit pieces out to infinity. We use 32-bit pieces because these are
* the size of integers on which Javascript performs bit-operations. For
* operations like addition and multiplication, we split each number into 16-bit
* pieces, which can easily be multiplied within Javascript's floating-point
* representation without overflow or change in sign.
*
* @struct
* @constructor
* @param {Array<number>} bits Array containing the bits of the number.
* @param {number} sign The sign of the number: -1 for negative and 0 positive.
* @final
*/
goog.math.Integer = function(bits, sign) {
/**
* @type {!Array<number>}
* @private
*/
this.bits_ = [];
/**
* @type {number}
* @private
*/
this.sign_ = sign;
// Copy the 32-bit signed integer values passed in. We prune out those at the
// top that equal the sign since they are redundant.
var top = true;
for (var i = bits.length - 1; i >= 0; i--) {
var val = bits[i] | 0;
if (!top || val != sign) {
this.bits_[i] = val;
top = false;
}
}
};
// NOTE: Common constant values ZERO, ONE, NEG_ONE, etc. are defined below the
// from* methods on which they depend.
/**
* A cache of the Integer representations of small integer values.
* @type {!Object}
* @private
*/
goog.math.Integer.IntCache_ = {};
/**
* Returns an Integer representing the given (32-bit) integer value.
* @param {number} value A 32-bit integer value.
* @return {!goog.math.Integer} The corresponding Integer value.
*/
goog.math.Integer.fromInt = function(value) {
if (-128 <= value && value < 128) {
var cachedObj = goog.math.Integer.IntCache_[value];
if (cachedObj) {
return cachedObj;
}
}
var obj = new goog.math.Integer([value | 0], value < 0 ? -1 : 0);
if (-128 <= value && value < 128) {
goog.math.Integer.IntCache_[value] = obj;
}
return obj;
};
/**
* Returns an Integer representing the given value, provided that it is a finite
* number. Otherwise, zero is returned.
* @param {number} value The value in question.
* @return {!goog.math.Integer} The corresponding Integer value.
*/
goog.math.Integer.fromNumber = function(value) {
if (isNaN(value) || !isFinite(value)) {
return goog.math.Integer.ZERO;
} else if (value < 0) {
return goog.math.Integer.fromNumber(-value).negate();
} else {
var bits = [];
var pow = 1;
for (var i = 0; value >= pow; i++) {
bits[i] = (value / pow) | 0;
pow *= goog.math.Integer.TWO_PWR_32_DBL_;
}
return new goog.math.Integer(bits, 0);
}
};
/**
* Returns a Integer representing the value that comes by concatenating the
* given entries, each is assumed to be 32 signed bits, given in little-endian
* order (lowest order bits in the lowest index), and sign-extending the highest
* order 32-bit value.
* @param {Array<number>} bits The bits of the number, in 32-bit signed pieces,
* in little-endian order.
* @return {!goog.math.Integer} The corresponding Integer value.
*/
goog.math.Integer.fromBits = function(bits) {
var high = bits[bits.length - 1];
return new goog.math.Integer(bits, high & (1 << 31) ? -1 : 0);
};
/**
* Returns an Integer representation of the given string, written using the
* given radix.
* @param {string} str The textual representation of the Integer.
* @param {number=} opt_radix The radix in which the text is written.
* @return {!goog.math.Integer} The corresponding Integer value.
*/
goog.math.Integer.fromString = function(str, opt_radix) {
if (str.length == 0) {
throw Error('number format error: empty string');
}
var radix = opt_radix || 10;
if (radix < 2 || 36 < radix) {
throw Error('radix out of range: ' + radix);
}
if (str.charAt(0) == '-') {
return goog.math.Integer.fromString(str.substring(1), radix).negate();
} else if (str.indexOf('-') >= 0) {
throw Error('number format error: interior "-" character');
}
// Do several (8) digits each time through the loop, so as to
// minimize the calls to the very expensive emulated div.
var radixToPower = goog.math.Integer.fromNumber(Math.pow(radix, 8));
var result = goog.math.Integer.ZERO;
for (var i = 0; i < str.length; i += 8) {
var size = Math.min(8, str.length - i);
var value = parseInt(str.substring(i, i + size), radix);
if (size < 8) {
var power = goog.math.Integer.fromNumber(Math.pow(radix, size));
result = result.multiply(power).add(goog.math.Integer.fromNumber(value));
} else {
result = result.multiply(radixToPower);
result = result.add(goog.math.Integer.fromNumber(value));
}
}
return result;
};
/**
* A number used repeatedly in calculations. This must appear before the first
* call to the from* functions below.
* @type {number}
* @private
*/
goog.math.Integer.TWO_PWR_32_DBL_ = (1 << 16) * (1 << 16);
/** @type {!goog.math.Integer} */
goog.math.Integer.ZERO = goog.math.Integer.fromInt(0);
/** @type {!goog.math.Integer} */
goog.math.Integer.ONE = goog.math.Integer.fromInt(1);
/**
* @type {!goog.math.Integer}
* @private
*/
goog.math.Integer.TWO_PWR_24_ = goog.math.Integer.fromInt(1 << 24);
/**
* Returns the value, assuming it is a 32-bit integer.
* @return {number} The corresponding int value.
*/
goog.math.Integer.prototype.toInt = function() {
return this.bits_.length > 0 ? this.bits_[0] : this.sign_;
};
/** @return {number} The closest floating-point representation to this value. */
goog.math.Integer.prototype.toNumber = function() {
if (this.isNegative()) {
return -this.negate().toNumber();
} else {
var val = 0;
var pow = 1;
for (var i = 0; i < this.bits_.length; i++) {
val += this.getBitsUnsigned(i) * pow;
pow *= goog.math.Integer.TWO_PWR_32_DBL_;
}
return val;
}
};
/**
* @param {number=} opt_radix The radix in which the text should be written.
* @return {string} The textual representation of this value.
* @override
*/
goog.math.Integer.prototype.toString = function(opt_radix) {
var radix = opt_radix || 10;
if (radix < 2 || 36 < radix) {
throw Error('radix out of range: ' + radix);
}
if (this.isZero()) {
return '0';
} else if (this.isNegative()) {
return '-' + this.negate().toString(radix);
}
// Do several (6) digits each time through the loop, so as to
// minimize the calls to the very expensive emulated div.
var radixToPower = goog.math.Integer.fromNumber(Math.pow(radix, 6));
var rem = this;
var result = '';
while (true) {
var remDiv = rem.divide(radixToPower);
// The right shifting fixes negative values in the case when
// intval >= 2^31; for more details see
// https://github.com/google/closure-library/pull/498
var intval = rem.subtract(remDiv.multiply(radixToPower)).toInt() >>> 0;
var digits = intval.toString(radix);
rem = remDiv;
if (rem.isZero()) {
return digits + result;
} else {
while (digits.length < 6) {
digits = '0' + digits;
}
result = '' + digits + result;
}
}
};
/**
* Returns the index-th 32-bit (signed) piece of the Integer according to
* little-endian order (i.e., index 0 contains the smallest bits).
* @param {number} index The index in question.
* @return {number} The requested 32-bits as a signed number.
*/
goog.math.Integer.prototype.getBits = function(index) {
if (index < 0) {
return 0; // Allowing this simplifies bit shifting operations below...
} else if (index < this.bits_.length) {
return this.bits_[index];
} else {
return this.sign_;
}
};
/**
* Returns the index-th 32-bit piece as an unsigned number.
* @param {number} index The index in question.
* @return {number} The requested 32-bits as an unsigned number.
*/
goog.math.Integer.prototype.getBitsUnsigned = function(index) {
var val = this.getBits(index);
return val >= 0 ? val : goog.math.Integer.TWO_PWR_32_DBL_ + val;
};
/** @return {number} The sign bit of this number, -1 or 0. */
goog.math.Integer.prototype.getSign = function() {
return this.sign_;
};
/** @return {boolean} Whether this value is zero. */
goog.math.Integer.prototype.isZero = function() {
if (this.sign_ != 0) {
return false;
}
for (var i = 0; i < this.bits_.length; i++) {
if (this.bits_[i] != 0) {
return false;
}
}
return true;
};
/** @return {boolean} Whether this value is negative. */
goog.math.Integer.prototype.isNegative = function() {
return this.sign_ == -1;
};
/** @return {boolean} Whether this value is odd. */
goog.math.Integer.prototype.isOdd = function() {
return (this.bits_.length == 0) && (this.sign_ == -1) ||
(this.bits_.length > 0) && ((this.bits_[0] & 1) != 0);
};
/**
* @param {goog.math.Integer} other Integer to compare against.
* @return {boolean} Whether this Integer equals the other.
*/
goog.math.Integer.prototype.equals = function(other) {
if (this.sign_ != other.sign_) {
return false;
}
var len = Math.max(this.bits_.length, other.bits_.length);
for (var i = 0; i < len; i++) {
if (this.getBits(i) != other.getBits(i)) {
return false;
}
}
return true;
};
/**
* @param {goog.math.Integer} other Integer to compare against.
* @return {boolean} Whether this Integer does not equal the other.
*/
goog.math.Integer.prototype.notEquals = function(other) {
return !this.equals(other);
};
/**
* @param {goog.math.Integer} other Integer to compare against.
* @return {boolean} Whether this Integer is greater than the other.
*/
goog.math.Integer.prototype.greaterThan = function(other) {
return this.compare(other) > 0;
};
/**
* @param {goog.math.Integer} other Integer to compare against.
* @return {boolean} Whether this Integer is greater than or equal to the other.
*/
goog.math.Integer.prototype.greaterThanOrEqual = function(other) {
return this.compare(other) >= 0;
};
/**
* @param {goog.math.Integer} other Integer to compare against.
* @return {boolean} Whether this Integer is less than the other.
*/
goog.math.Integer.prototype.lessThan = function(other) {
return this.compare(other) < 0;
};
/**
* @param {goog.math.Integer} other Integer to compare against.
* @return {boolean} Whether this Integer is less than or equal to the other.
*/
goog.math.Integer.prototype.lessThanOrEqual = function(other) {
return this.compare(other) <= 0;
};
/**
* Compares this Integer with the given one.
* @param {goog.math.Integer} other Integer to compare against.
* @return {number} 0 if they are the same, 1 if the this is greater, and -1
* if the given one is greater.
*/
goog.math.Integer.prototype.compare = function(other) {
var diff = this.subtract(other);
if (diff.isNegative()) {
return -1;
} else if (diff.isZero()) {
return 0;
} else {
return +1;
}
};
/**
* Returns an integer with only the first numBits bits of this value, sign
* extended from the final bit.
* @param {number} numBits The number of bits by which to shift.
* @return {!goog.math.Integer} The shorted integer value.
*/
goog.math.Integer.prototype.shorten = function(numBits) {
var arr_index = (numBits - 1) >> 5;
var bit_index = (numBits - 1) % 32;
var bits = [];
for (var i = 0; i < arr_index; i++) {
bits[i] = this.getBits(i);
}
var sigBits = bit_index == 31 ? 0xFFFFFFFF : (1 << (bit_index + 1)) - 1;
var val = this.getBits(arr_index) & sigBits;
if (val & (1 << bit_index)) {
val |= 0xFFFFFFFF - sigBits;
bits[arr_index] = val;
return new goog.math.Integer(bits, -1);
} else {
bits[arr_index] = val;
return new goog.math.Integer(bits, 0);
}
};
/** @return {!goog.math.Integer} The negation of this value. */
goog.math.Integer.prototype.negate = function() {
return this.not().add(goog.math.Integer.ONE);
};
/**
* Returns the sum of this and the given Integer.
* @param {goog.math.Integer} other The Integer to add to this.
* @return {!goog.math.Integer} The Integer result.
*/
goog.math.Integer.prototype.add = function(other) {
var len = Math.max(this.bits_.length, other.bits_.length);
var arr = [];
var carry = 0;
for (var i = 0; i <= len; i++) {
var a1 = this.getBits(i) >>> 16;
var a0 = this.getBits(i) & 0xFFFF;
var b1 = other.getBits(i) >>> 16;
var b0 = other.getBits(i) & 0xFFFF;
var c0 = carry + a0 + b0;
var c1 = (c0 >>> 16) + a1 + b1;
carry = c1 >>> 16;
c0 &= 0xFFFF;
c1 &= 0xFFFF;
arr[i] = (c1 << 16) | c0;
}
return goog.math.Integer.fromBits(arr);
};
/**
* Returns the difference of this and the given Integer.
* @param {goog.math.Integer} other The Integer to subtract from this.
* @return {!goog.math.Integer} The Integer result.
*/
goog.math.Integer.prototype.subtract = function(other) {
return this.add(other.negate());
};
/**
* Returns the product of this and the given Integer.
* @param {goog.math.Integer} other The Integer to multiply against this.
* @return {!goog.math.Integer} The product of this and the other.
*/
goog.math.Integer.prototype.multiply = function(other) {
if (this.isZero()) {
return goog.math.Integer.ZERO;
} else if (other.isZero()) {
return goog.math.Integer.ZERO;
}
if (this.isNegative()) {
if (other.isNegative()) {
return this.negate().multiply(other.negate());
} else {
return this.negate().multiply(other).negate();
}
} else if (other.isNegative()) {
return this.multiply(other.negate()).negate();
}
// If both numbers are small, use float multiplication
if (this.lessThan(goog.math.Integer.TWO_PWR_24_) &&
other.lessThan(goog.math.Integer.TWO_PWR_24_)) {
return goog.math.Integer.fromNumber(this.toNumber() * other.toNumber());
}
// Fill in an array of 16-bit products.
var len = this.bits_.length + other.bits_.length;
var arr = [];
for (var i = 0; i < 2 * len; i++) {
arr[i] = 0;
}
for (var i = 0; i < this.bits_.length; i++) {
for (var j = 0; j < other.bits_.length; j++) {
var a1 = this.getBits(i) >>> 16;
var a0 = this.getBits(i) & 0xFFFF;
var b1 = other.getBits(j) >>> 16;
var b0 = other.getBits(j) & 0xFFFF;
arr[2 * i + 2 * j] += a0 * b0;
goog.math.Integer.carry16_(arr, 2 * i + 2 * j);
arr[2 * i + 2 * j + 1] += a1 * b0;
goog.math.Integer.carry16_(arr, 2 * i + 2 * j + 1);
arr[2 * i + 2 * j + 1] += a0 * b1;
goog.math.Integer.carry16_(arr, 2 * i + 2 * j + 1);
arr[2 * i + 2 * j + 2] += a1 * b1;
goog.math.Integer.carry16_(arr, 2 * i + 2 * j + 2);
}
}
// Combine the 16-bit values into 32-bit values.
for (var i = 0; i < len; i++) {
arr[i] = (arr[2 * i + 1] << 16) | arr[2 * i];
}
for (var i = len; i < 2 * len; i++) {
arr[i] = 0;
}
return new goog.math.Integer(arr, 0);
};
/**
* Carries any overflow from the given index into later entries.
* @param {Array<number>} bits Array of 16-bit values in little-endian order.
* @param {number} index The index in question.
* @private
*/
goog.math.Integer.carry16_ = function(bits, index) {
while ((bits[index] & 0xFFFF) != bits[index]) {
bits[index + 1] += bits[index] >>> 16;
bits[index] &= 0xFFFF;
}
};
/**
* Returns "this" Integer divided by the given one. Both "this" and the given
* Integer MUST be positive.
*
* This method is only needed for very large numbers (>10^308),
* for which the original division algorithm gets into an infinite
* loop (see https://github.com/google/closure-library/issues/500).
*
* The algorithm has some possible performance enhancements (or
* could be rewritten entirely), it's just an initial solution for
* the issue linked above.
*
* @param {!goog.math.Integer} other The Integer to divide "this" by.
* @return {!goog.math.Integer} "this" value divided by the given one.
* @private
*/
goog.math.Integer.prototype.slowDivide_ = function(other) {
if (this.isNegative() || other.isNegative()) {
throw Error('slowDivide_ only works with positive integers.');
}
var twoPower = goog.math.Integer.ONE;
var multiple = other;
// First we have to figure out what the highest bit of the result
// is, so we increase "twoPower" and "multiple" until "multiple"
// exceeds "this".
while (multiple.lessThanOrEqual(this)) {
twoPower = twoPower.shiftLeft(1);
multiple = multiple.shiftLeft(1);
}
// Rewind by one power of two, giving us the highest bit of the
// result.
var res = twoPower.shiftRight(1);
var total = multiple.shiftRight(1);
// Now we starting decreasing "multiple" and "twoPower" to find the
// rest of the bits of the result.
var total2;
multiple = multiple.shiftRight(2);
twoPower = twoPower.shiftRight(2);
while (!multiple.isZero()) {
// whenever we can add "multiple" to the total and not exceed
// "this", that means we've found a 1 bit. Else we've found a 0
// and don't need to add to the result.
total2 = total.add(multiple);
if (total2.lessThanOrEqual(this)) {
res = res.add(twoPower);
total = total2;
}
multiple = multiple.shiftRight(1);
twoPower = twoPower.shiftRight(1);
}
return res;
};
/**
* Returns this Integer divided by the given one.
* @param {!goog.math.Integer} other The Integer to divide this by.
* @return {!goog.math.Integer} This value divided by the given one.
*/
goog.math.Integer.prototype.divide = function(other) {
if (other.isZero()) {
throw Error('division by zero');
} else if (this.isZero()) {
return goog.math.Integer.ZERO;
}
if (this.isNegative()) {
if (other.isNegative()) {
return this.negate().divide(other.negate());
} else {
return this.negate().divide(other).negate();
}
} else if (other.isNegative()) {
return this.divide(other.negate()).negate();
}
// Have to degrade to slowDivide for Very Large Numbers, because
// they're out of range for the floating-point approximation
// technique used below.
if (this.bits_.length > 30) {
return this.slowDivide_(other);
}
// Repeat the following until the remainder is less than other: find a
// floating-point that approximates remainder / other *from below*, add this
// into the result, and subtract it from the remainder. It is critical that
// the approximate value is less than or equal to the real value so that the
// remainder never becomes negative.
var res = goog.math.Integer.ZERO;
var rem = this;
while (rem.greaterThanOrEqual(other)) {
// Approximate the result of division. This may be a little greater or
// smaller than the actual value.
var approx = Math.max(1, Math.floor(rem.toNumber() / other.toNumber()));
// We will tweak the approximate result by changing it in the 48-th digit or
// the smallest non-fractional digit, whichever is larger.
var log2 = Math.ceil(Math.log(approx) / Math.LN2);
var delta = (log2 <= 48) ? 1 : Math.pow(2, log2 - 48);
// Decrease the approximation until it is smaller than the remainder. Note
// that if it is too large, the product overflows and is negative.
var approxRes = goog.math.Integer.fromNumber(approx);
var approxRem = approxRes.multiply(other);
while (approxRem.isNegative() || approxRem.greaterThan(rem)) {
approx -= delta;
approxRes = goog.math.Integer.fromNumber(approx);
approxRem = approxRes.multiply(other);
}
// We know the answer can't be zero... and actually, zero would cause
// infinite recursion since we would make no progress.
if (approxRes.isZero()) {
approxRes = goog.math.Integer.ONE;
}
res = res.add(approxRes);
rem = rem.subtract(approxRem);
}
return res;
};
/**
* Returns this Integer modulo the given one.
* @param {!goog.math.Integer} other The Integer by which to mod.
* @return {!goog.math.Integer} This value modulo the given one.
*/
goog.math.Integer.prototype.modulo = function(other) {
return this.subtract(this.divide(other).multiply(other));
};
/** @return {!goog.math.Integer} The bitwise-NOT of this value. */
goog.math.Integer.prototype.not = function() {
var len = this.bits_.length;
var arr = [];
for (var i = 0; i < len; i++) {
arr[i] = ~this.bits_[i];
}
return new goog.math.Integer(arr, ~this.sign_);
};
/**
* Returns the bitwise-AND of this Integer and the given one.
* @param {goog.math.Integer} other The Integer to AND with this.
* @return {!goog.math.Integer} The bitwise-AND of this and the other.
*/
goog.math.Integer.prototype.and = function(other) {
var len = Math.max(this.bits_.length, other.bits_.length);
var arr = [];
for (var i = 0; i < len; i++) {
arr[i] = this.getBits(i) & other.getBits(i);
}
return new goog.math.Integer(arr, this.sign_ & other.sign_);
};
/**
* Returns the bitwise-OR of this Integer and the given one.
* @param {goog.math.Integer} other The Integer to OR with this.
* @return {!goog.math.Integer} The bitwise-OR of this and the other.
*/
goog.math.Integer.prototype.or = function(other) {
var len = Math.max(this.bits_.length, other.bits_.length);
var arr = [];
for (var i = 0; i < len; i++) {
arr[i] = this.getBits(i) | other.getBits(i);
}
return new goog.math.Integer(arr, this.sign_ | other.sign_);
};
/**
* Returns the bitwise-XOR of this Integer and the given one.
* @param {goog.math.Integer} other The Integer to XOR with this.
* @return {!goog.math.Integer} The bitwise-XOR of this and the other.
*/
goog.math.Integer.prototype.xor = function(other) {
var len = Math.max(this.bits_.length, other.bits_.length);
var arr = [];
for (var i = 0; i < len; i++) {
arr[i] = this.getBits(i) ^ other.getBits(i);
}
return new goog.math.Integer(arr, this.sign_ ^ other.sign_);
};
/**
* Returns this value with bits shifted to the left by the given amount.
* @param {number} numBits The number of bits by which to shift.
* @return {!goog.math.Integer} This shifted to the left by the given amount.
*/
goog.math.Integer.prototype.shiftLeft = function(numBits) {
var arr_delta = numBits >> 5;
var bit_delta = numBits % 32;
var len = this.bits_.length + arr_delta + (bit_delta > 0 ? 1 : 0);
var arr = [];
for (var i = 0; i < len; i++) {
if (bit_delta > 0) {
arr[i] = (this.getBits(i - arr_delta) << bit_delta) |
(this.getBits(i - arr_delta - 1) >>> (32 - bit_delta));
} else {
arr[i] = this.getBits(i - arr_delta);
}
}
return new goog.math.Integer(arr, this.sign_);
};
/**
* Returns this value with bits shifted to the right by the given amount.
* @param {number} numBits The number of bits by which to shift.
* @return {!goog.math.Integer} This shifted to the right by the given amount.
*/
goog.math.Integer.prototype.shiftRight = function(numBits) {
var arr_delta = numBits >> 5;
var bit_delta = numBits % 32;
var len = this.bits_.length - arr_delta;
var arr = [];
for (var i = 0; i < len; i++) {
if (bit_delta > 0) {
arr[i] = (this.getBits(i + arr_delta) >>> bit_delta) |
(this.getBits(i + arr_delta + 1) << (32 - bit_delta));
} else {
arr[i] = this.getBits(i + arr_delta);
}
}
return new goog.math.Integer(arr, this.sign_);
};

View file

@ -0,0 +1,843 @@
// Copyright 2009 The Closure Library Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS-IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/**
* @fileoverview Defines a Long class for representing a 64-bit two's-complement
* integer value, which faithfully simulates the behavior of a Java "long". This
* implementation is derived from LongLib in GWT.
*
*/
goog.provide('goog.math.Long');
goog.require('goog.reflect');
/**
* Constructs a 64-bit two's-complement integer, given its low and high 32-bit
* values as *signed* integers. See the from* functions below for more
* convenient ways of constructing Longs.
*
* The internal representation of a long is the two given signed, 32-bit values.
* We use 32-bit pieces because these are the size of integers on which
* Javascript performs bit-operations. For operations like addition and
* multiplication, we split each number into 16-bit pieces, which can easily be
* multiplied within Javascript's floating-point representation without overflow
* or change in sign.
*
* In the algorithms below, we frequently reduce the negative case to the
* positive case by negating the input(s) and then post-processing the result.
* Note that we must ALWAYS check specially whether those values are MIN_VALUE
* (-2^63) because -MIN_VALUE == MIN_VALUE (since 2^63 cannot be represented as
* a positive number, it overflows back into a negative). Not handling this
* case would often result in infinite recursion.
*
* @param {number} low The low (signed) 32 bits of the long.
* @param {number} high The high (signed) 32 bits of the long.
* @struct
* @constructor
* @final
*/
goog.math.Long = function(low, high) {
/**
* @type {number}
* @private
*/
this.low_ = low | 0; // force into 32 signed bits.
/**
* @type {number}
* @private
*/
this.high_ = high | 0; // force into 32 signed bits.
};
// NOTE: Common constant values ZERO, ONE, NEG_ONE, etc. are defined below the
// from* methods on which they depend.
/**
* A cache of the Long representations of small integer values.
* @type {!Object<number, !goog.math.Long>}
* @private
*/
goog.math.Long.IntCache_ = {};
/**
* A cache of the Long representations of common values.
* @type {!Object<goog.math.Long.ValueCacheId_, !goog.math.Long>}
* @private
*/
goog.math.Long.valueCache_ = {};
/**
* Returns a Long representing the given (32-bit) integer value.
* @param {number} value The 32-bit integer in question.
* @return {!goog.math.Long} The corresponding Long value.
*/
goog.math.Long.fromInt = function(value) {
if (-128 <= value && value < 128) {
return goog.reflect.cache(goog.math.Long.IntCache_, value, function(val) {
return new goog.math.Long(val | 0, val < 0 ? -1 : 0);
});
} else {
return new goog.math.Long(value | 0, value < 0 ? -1 : 0);
}
};
/**
* Returns a Long representing the given value.
* NaN will be returned as zero. Infinity is converted to max value and
* -Infinity to min value.
* @param {number} value The number in question.
* @return {!goog.math.Long} The corresponding Long value.
*/
goog.math.Long.fromNumber = function(value) {
if (isNaN(value)) {
return goog.math.Long.getZero();
} else if (value <= -goog.math.Long.TWO_PWR_63_DBL_) {
return goog.math.Long.getMinValue();
} else if (value + 1 >= goog.math.Long.TWO_PWR_63_DBL_) {
return goog.math.Long.getMaxValue();
} else if (value < 0) {
return goog.math.Long.fromNumber(-value).negate();
} else {
return new goog.math.Long(
(value % goog.math.Long.TWO_PWR_32_DBL_) | 0,
(value / goog.math.Long.TWO_PWR_32_DBL_) | 0);
}
};
/**
* Returns a Long representing the 64-bit integer that comes by concatenating
* the given high and low bits. Each is assumed to use 32 bits.
* @param {number} lowBits The low 32-bits.
* @param {number} highBits The high 32-bits.
* @return {!goog.math.Long} The corresponding Long value.
*/
goog.math.Long.fromBits = function(lowBits, highBits) {
return new goog.math.Long(lowBits, highBits);
};
/**
* Returns a Long representation of the given string, written using the given
* radix.
* @param {string} str The textual representation of the Long.
* @param {number=} opt_radix The radix in which the text is written.
* @return {!goog.math.Long} The corresponding Long value.
*/
goog.math.Long.fromString = function(str, opt_radix) {
if (str.length == 0) {
throw Error('number format error: empty string');
}
var radix = opt_radix || 10;
if (radix < 2 || 36 < radix) {
throw Error('radix out of range: ' + radix);
}
if (str.charAt(0) == '-') {
return goog.math.Long.fromString(str.substring(1), radix).negate();
} else if (str.indexOf('-') >= 0) {
throw Error('number format error: interior "-" character: ' + str);
}
// Do several (8) digits each time through the loop, so as to
// minimize the calls to the very expensive emulated div.
var radixToPower = goog.math.Long.fromNumber(Math.pow(radix, 8));
var result = goog.math.Long.getZero();
for (var i = 0; i < str.length; i += 8) {
var size = Math.min(8, str.length - i);
var value = parseInt(str.substring(i, i + size), radix);
if (size < 8) {
var power = goog.math.Long.fromNumber(Math.pow(radix, size));
result = result.multiply(power).add(goog.math.Long.fromNumber(value));
} else {
result = result.multiply(radixToPower);
result = result.add(goog.math.Long.fromNumber(value));
}
}
return result;
};
// NOTE: the compiler should inline these constant values below and then remove
// these variables, so there should be no runtime penalty for these.
/**
* Number used repeated below in calculations. This must appear before the
* first call to any from* function below.
* @type {number}
* @private
*/
goog.math.Long.TWO_PWR_16_DBL_ = 1 << 16;
/**
* @type {number}
* @private
*/
goog.math.Long.TWO_PWR_32_DBL_ =
goog.math.Long.TWO_PWR_16_DBL_ * goog.math.Long.TWO_PWR_16_DBL_;
/**
* @type {number}
* @private
*/
goog.math.Long.TWO_PWR_64_DBL_ =
goog.math.Long.TWO_PWR_32_DBL_ * goog.math.Long.TWO_PWR_32_DBL_;
/**
* @type {number}
* @private
*/
goog.math.Long.TWO_PWR_63_DBL_ = goog.math.Long.TWO_PWR_64_DBL_ / 2;
/**
* @return {!goog.math.Long}
* @public
*/
goog.math.Long.getZero = function() {
return goog.reflect.cache(
goog.math.Long.valueCache_, goog.math.Long.ValueCacheId_.ZERO,
function() { return goog.math.Long.fromInt(0); });
};
/**
* @return {!goog.math.Long}
* @public
*/
goog.math.Long.getOne = function() {
return goog.reflect.cache(
goog.math.Long.valueCache_, goog.math.Long.ValueCacheId_.ONE,
function() { return goog.math.Long.fromInt(1); });
};
/**
* @return {!goog.math.Long}
* @public
*/
goog.math.Long.getNegOne = function() {
return goog.reflect.cache(
goog.math.Long.valueCache_, goog.math.Long.ValueCacheId_.NEG_ONE,
function() { return goog.math.Long.fromInt(-1); });
};
/**
* @return {!goog.math.Long}
* @public
*/
goog.math.Long.getMaxValue = function() {
return goog.reflect.cache(
goog.math.Long.valueCache_, goog.math.Long.ValueCacheId_.MAX_VALUE,
function() {
return goog.math.Long.fromBits(0xFFFFFFFF | 0, 0x7FFFFFFF | 0);
});
};
/**
* @return {!goog.math.Long}
* @public
*/
goog.math.Long.getMinValue = function() {
return goog.reflect.cache(
goog.math.Long.valueCache_, goog.math.Long.ValueCacheId_.MIN_VALUE,
function() { return goog.math.Long.fromBits(0, 0x80000000 | 0); });
};
/**
* @return {!goog.math.Long}
* @public
*/
goog.math.Long.getTwoPwr24 = function() {
return goog.reflect.cache(
goog.math.Long.valueCache_, goog.math.Long.ValueCacheId_.TWO_PWR_24,
function() { return goog.math.Long.fromInt(1 << 24); });
};
/** @return {number} The value, assuming it is a 32-bit integer. */
goog.math.Long.prototype.toInt = function() {
return this.low_;
};
/** @return {number} The closest floating-point representation to this value. */
goog.math.Long.prototype.toNumber = function() {
return this.high_ * goog.math.Long.TWO_PWR_32_DBL_ +
this.getLowBitsUnsigned();
};
/**
* @param {number=} opt_radix The radix in which the text should be written.
* @return {string} The textual representation of this value.
* @override
*/
goog.math.Long.prototype.toString = function(opt_radix) {
var radix = opt_radix || 10;
if (radix < 2 || 36 < radix) {
throw Error('radix out of range: ' + radix);
}
if (this.isZero()) {
return '0';
}
if (this.isNegative()) {
if (this.equals(goog.math.Long.getMinValue())) {
// We need to change the Long value before it can be negated, so we remove
// the bottom-most digit in this base and then recurse to do the rest.
var radixLong = goog.math.Long.fromNumber(radix);
var div = this.div(radixLong);
var rem = div.multiply(radixLong).subtract(this);
return div.toString(radix) + rem.toInt().toString(radix);
} else {
return '-' + this.negate().toString(radix);
}
}
// Do several (6) digits each time through the loop, so as to
// minimize the calls to the very expensive emulated div.
var radixToPower = goog.math.Long.fromNumber(Math.pow(radix, 6));
var rem = this;
var result = '';
while (true) {
var remDiv = rem.div(radixToPower);
// The right shifting fixes negative values in the case when
// intval >= 2^31; for more details see
// https://github.com/google/closure-library/pull/498
var intval = rem.subtract(remDiv.multiply(radixToPower)).toInt() >>> 0;
var digits = intval.toString(radix);
rem = remDiv;
if (rem.isZero()) {
return digits + result;
} else {
while (digits.length < 6) {
digits = '0' + digits;
}
result = '' + digits + result;
}
}
};
/** @return {number} The high 32-bits as a signed value. */
goog.math.Long.prototype.getHighBits = function() {
return this.high_;
};
/** @return {number} The low 32-bits as a signed value. */
goog.math.Long.prototype.getLowBits = function() {
return this.low_;
};
/** @return {number} The low 32-bits as an unsigned value. */
goog.math.Long.prototype.getLowBitsUnsigned = function() {
return (this.low_ >= 0) ? this.low_ :
goog.math.Long.TWO_PWR_32_DBL_ + this.low_;
};
/**
* @return {number} Returns the number of bits needed to represent the absolute
* value of this Long.
*/
goog.math.Long.prototype.getNumBitsAbs = function() {
if (this.isNegative()) {
if (this.equals(goog.math.Long.getMinValue())) {
return 64;
} else {
return this.negate().getNumBitsAbs();
}
} else {
var val = this.high_ != 0 ? this.high_ : this.low_;
for (var bit = 31; bit > 0; bit--) {
if ((val & (1 << bit)) != 0) {
break;
}
}
return this.high_ != 0 ? bit + 33 : bit + 1;
}
};
/** @return {boolean} Whether this value is zero. */
goog.math.Long.prototype.isZero = function() {
return this.high_ == 0 && this.low_ == 0;
};
/** @return {boolean} Whether this value is negative. */
goog.math.Long.prototype.isNegative = function() {
return this.high_ < 0;
};
/** @return {boolean} Whether this value is odd. */
goog.math.Long.prototype.isOdd = function() {
return (this.low_ & 1) == 1;
};
/**
* @param {goog.math.Long} other Long to compare against.
* @return {boolean} Whether this Long equals the other.
*/
goog.math.Long.prototype.equals = function(other) {
return (this.high_ == other.high_) && (this.low_ == other.low_);
};
/**
* @param {goog.math.Long} other Long to compare against.
* @return {boolean} Whether this Long does not equal the other.
*/
goog.math.Long.prototype.notEquals = function(other) {
return (this.high_ != other.high_) || (this.low_ != other.low_);
};
/**
* @param {goog.math.Long} other Long to compare against.
* @return {boolean} Whether this Long is less than the other.
*/
goog.math.Long.prototype.lessThan = function(other) {
return this.compare(other) < 0;
};
/**
* @param {goog.math.Long} other Long to compare against.
* @return {boolean} Whether this Long is less than or equal to the other.
*/
goog.math.Long.prototype.lessThanOrEqual = function(other) {
return this.compare(other) <= 0;
};
/**
* @param {goog.math.Long} other Long to compare against.
* @return {boolean} Whether this Long is greater than the other.
*/
goog.math.Long.prototype.greaterThan = function(other) {
return this.compare(other) > 0;
};
/**
* @param {goog.math.Long} other Long to compare against.
* @return {boolean} Whether this Long is greater than or equal to the other.
*/
goog.math.Long.prototype.greaterThanOrEqual = function(other) {
return this.compare(other) >= 0;
};
/**
* Compares this Long with the given one.
* @param {goog.math.Long} other Long to compare against.
* @return {number} 0 if they are the same, 1 if the this is greater, and -1
* if the given one is greater.
*/
goog.math.Long.prototype.compare = function(other) {
if (this.equals(other)) {
return 0;
}
var thisNeg = this.isNegative();
var otherNeg = other.isNegative();
if (thisNeg && !otherNeg) {
return -1;
}
if (!thisNeg && otherNeg) {
return 1;
}
// at this point, the signs are the same, so subtraction will not overflow
if (this.subtract(other).isNegative()) {
return -1;
} else {
return 1;
}
};
/** @return {!goog.math.Long} The negation of this value. */
goog.math.Long.prototype.negate = function() {
if (this.equals(goog.math.Long.getMinValue())) {
return goog.math.Long.getMinValue();
} else {
return this.not().add(goog.math.Long.getOne());
}
};
/**
* Returns the sum of this and the given Long.
* @param {goog.math.Long} other Long to add to this one.
* @return {!goog.math.Long} The sum of this and the given Long.
*/
goog.math.Long.prototype.add = function(other) {
// Divide each number into 4 chunks of 16 bits, and then sum the chunks.
var a48 = this.high_ >>> 16;
var a32 = this.high_ & 0xFFFF;
var a16 = this.low_ >>> 16;
var a00 = this.low_ & 0xFFFF;
var b48 = other.high_ >>> 16;
var b32 = other.high_ & 0xFFFF;
var b16 = other.low_ >>> 16;
var b00 = other.low_ & 0xFFFF;
var c48 = 0, c32 = 0, c16 = 0, c00 = 0;
c00 += a00 + b00;
c16 += c00 >>> 16;
c00 &= 0xFFFF;
c16 += a16 + b16;
c32 += c16 >>> 16;
c16 &= 0xFFFF;
c32 += a32 + b32;
c48 += c32 >>> 16;
c32 &= 0xFFFF;
c48 += a48 + b48;
c48 &= 0xFFFF;
return goog.math.Long.fromBits((c16 << 16) | c00, (c48 << 16) | c32);
};
/**
* Returns the difference of this and the given Long.
* @param {goog.math.Long} other Long to subtract from this.
* @return {!goog.math.Long} The difference of this and the given Long.
*/
goog.math.Long.prototype.subtract = function(other) {
return this.add(other.negate());
};
/**
* Returns the product of this and the given long.
* @param {goog.math.Long} other Long to multiply with this.
* @return {!goog.math.Long} The product of this and the other.
*/
goog.math.Long.prototype.multiply = function(other) {
if (this.isZero()) {
return goog.math.Long.getZero();
} else if (other.isZero()) {
return goog.math.Long.getZero();
}
if (this.equals(goog.math.Long.getMinValue())) {
return other.isOdd() ? goog.math.Long.getMinValue() :
goog.math.Long.getZero();
} else if (other.equals(goog.math.Long.getMinValue())) {
return this.isOdd() ? goog.math.Long.getMinValue() :
goog.math.Long.getZero();
}
if (this.isNegative()) {
if (other.isNegative()) {
return this.negate().multiply(other.negate());
} else {
return this.negate().multiply(other).negate();
}
} else if (other.isNegative()) {
return this.multiply(other.negate()).negate();
}
// If both longs are small, use float multiplication
if (this.lessThan(goog.math.Long.getTwoPwr24()) &&
other.lessThan(goog.math.Long.getTwoPwr24())) {
return goog.math.Long.fromNumber(this.toNumber() * other.toNumber());
}
// Divide each long into 4 chunks of 16 bits, and then add up 4x4 products.
// We can skip products that would overflow.
var a48 = this.high_ >>> 16;
var a32 = this.high_ & 0xFFFF;
var a16 = this.low_ >>> 16;
var a00 = this.low_ & 0xFFFF;
var b48 = other.high_ >>> 16;
var b32 = other.high_ & 0xFFFF;
var b16 = other.low_ >>> 16;
var b00 = other.low_ & 0xFFFF;
var c48 = 0, c32 = 0, c16 = 0, c00 = 0;
c00 += a00 * b00;
c16 += c00 >>> 16;
c00 &= 0xFFFF;
c16 += a16 * b00;
c32 += c16 >>> 16;
c16 &= 0xFFFF;
c16 += a00 * b16;
c32 += c16 >>> 16;
c16 &= 0xFFFF;
c32 += a32 * b00;
c48 += c32 >>> 16;
c32 &= 0xFFFF;
c32 += a16 * b16;
c48 += c32 >>> 16;
c32 &= 0xFFFF;
c32 += a00 * b32;
c48 += c32 >>> 16;
c32 &= 0xFFFF;
c48 += a48 * b00 + a32 * b16 + a16 * b32 + a00 * b48;
c48 &= 0xFFFF;
return goog.math.Long.fromBits((c16 << 16) | c00, (c48 << 16) | c32);
};
/**
* Returns this Long divided by the given one.
* @param {goog.math.Long} other Long by which to divide.
* @return {!goog.math.Long} This Long divided by the given one.
*/
goog.math.Long.prototype.div = function(other) {
if (other.isZero()) {
throw Error('division by zero');
} else if (this.isZero()) {
return goog.math.Long.getZero();
}
if (this.equals(goog.math.Long.getMinValue())) {
if (other.equals(goog.math.Long.getOne()) ||
other.equals(goog.math.Long.getNegOne())) {
return goog.math.Long.getMinValue(); // recall -MIN_VALUE == MIN_VALUE
} else if (other.equals(goog.math.Long.getMinValue())) {
return goog.math.Long.getOne();
} else {
// At this point, we have |other| >= 2, so |this/other| < |MIN_VALUE|.
var halfThis = this.shiftRight(1);
var approx = halfThis.div(other).shiftLeft(1);
if (approx.equals(goog.math.Long.getZero())) {
return other.isNegative() ? goog.math.Long.getOne() :
goog.math.Long.getNegOne();
} else {
var rem = this.subtract(other.multiply(approx));
var result = approx.add(rem.div(other));
return result;
}
}
} else if (other.equals(goog.math.Long.getMinValue())) {
return goog.math.Long.getZero();
}
if (this.isNegative()) {
if (other.isNegative()) {
return this.negate().div(other.negate());
} else {
return this.negate().div(other).negate();
}
} else if (other.isNegative()) {
return this.div(other.negate()).negate();
}
// Repeat the following until the remainder is less than other: find a
// floating-point that approximates remainder / other *from below*, add this
// into the result, and subtract it from the remainder. It is critical that
// the approximate value is less than or equal to the real value so that the
// remainder never becomes negative.
var res = goog.math.Long.getZero();
var rem = this;
while (rem.greaterThanOrEqual(other)) {
// Approximate the result of division. This may be a little greater or
// smaller than the actual value.
var approx = Math.max(1, Math.floor(rem.toNumber() / other.toNumber()));
// We will tweak the approximate result by changing it in the 48-th digit or
// the smallest non-fractional digit, whichever is larger.
var log2 = Math.ceil(Math.log(approx) / Math.LN2);
var delta = (log2 <= 48) ? 1 : Math.pow(2, log2 - 48);
// Decrease the approximation until it is smaller than the remainder. Note
// that if it is too large, the product overflows and is negative.
var approxRes = goog.math.Long.fromNumber(approx);
var approxRem = approxRes.multiply(other);
while (approxRem.isNegative() || approxRem.greaterThan(rem)) {
approx -= delta;
approxRes = goog.math.Long.fromNumber(approx);
approxRem = approxRes.multiply(other);
}
// We know the answer can't be zero... and actually, zero would cause
// infinite recursion since we would make no progress.
if (approxRes.isZero()) {
approxRes = goog.math.Long.getOne();
}
res = res.add(approxRes);
rem = rem.subtract(approxRem);
}
return res;
};
/**
* Returns this Long modulo the given one.
* @param {goog.math.Long} other Long by which to mod.
* @return {!goog.math.Long} This Long modulo the given one.
*/
goog.math.Long.prototype.modulo = function(other) {
return this.subtract(this.div(other).multiply(other));
};
/** @return {!goog.math.Long} The bitwise-NOT of this value. */
goog.math.Long.prototype.not = function() {
return goog.math.Long.fromBits(~this.low_, ~this.high_);
};
/**
* Returns the bitwise-AND of this Long and the given one.
* @param {goog.math.Long} other The Long with which to AND.
* @return {!goog.math.Long} The bitwise-AND of this and the other.
*/
goog.math.Long.prototype.and = function(other) {
return goog.math.Long.fromBits(
this.low_ & other.low_, this.high_ & other.high_);
};
/**
* Returns the bitwise-OR of this Long and the given one.
* @param {goog.math.Long} other The Long with which to OR.
* @return {!goog.math.Long} The bitwise-OR of this and the other.
*/
goog.math.Long.prototype.or = function(other) {
return goog.math.Long.fromBits(
this.low_ | other.low_, this.high_ | other.high_);
};
/**
* Returns the bitwise-XOR of this Long and the given one.
* @param {goog.math.Long} other The Long with which to XOR.
* @return {!goog.math.Long} The bitwise-XOR of this and the other.
*/
goog.math.Long.prototype.xor = function(other) {
return goog.math.Long.fromBits(
this.low_ ^ other.low_, this.high_ ^ other.high_);
};
/**
* Returns this Long with bits shifted to the left by the given amount.
* @param {number} numBits The number of bits by which to shift.
* @return {!goog.math.Long} This shifted to the left by the given amount.
*/
goog.math.Long.prototype.shiftLeft = function(numBits) {
numBits &= 63;
if (numBits == 0) {
return this;
} else {
var low = this.low_;
if (numBits < 32) {
var high = this.high_;
return goog.math.Long.fromBits(
low << numBits, (high << numBits) | (low >>> (32 - numBits)));
} else {
return goog.math.Long.fromBits(0, low << (numBits - 32));
}
}
};
/**
* Returns this Long with bits shifted to the right by the given amount.
* The new leading bits match the current sign bit.
* @param {number} numBits The number of bits by which to shift.
* @return {!goog.math.Long} This shifted to the right by the given amount.
*/
goog.math.Long.prototype.shiftRight = function(numBits) {
numBits &= 63;
if (numBits == 0) {
return this;
} else {
var high = this.high_;
if (numBits < 32) {
var low = this.low_;
return goog.math.Long.fromBits(
(low >>> numBits) | (high << (32 - numBits)), high >> numBits);
} else {
return goog.math.Long.fromBits(
high >> (numBits - 32), high >= 0 ? 0 : -1);
}
}
};
/**
* Returns this Long with bits shifted to the right by the given amount, with
* zeros placed into the new leading bits.
* @param {number} numBits The number of bits by which to shift.
* @return {!goog.math.Long} This shifted to the right by the given amount, with
* zeros placed into the new leading bits.
*/
goog.math.Long.prototype.shiftRightUnsigned = function(numBits) {
numBits &= 63;
if (numBits == 0) {
return this;
} else {
var high = this.high_;
if (numBits < 32) {
var low = this.low_;
return goog.math.Long.fromBits(
(low >>> numBits) | (high << (32 - numBits)), high >>> numBits);
} else if (numBits == 32) {
return goog.math.Long.fromBits(high, 0);
} else {
return goog.math.Long.fromBits(high >>> (numBits - 32), 0);
}
}
};
/**
* @enum {number} Ids of commonly requested Long instances.
* @private
*/
goog.math.Long.ValueCacheId_ = {
MAX_VALUE: 1,
MIN_VALUE: 2,
ZERO: 3,
ONE: 4,
NEG_ONE: 5,
TWO_PWR_24: 6
};

View file

@ -0,0 +1,447 @@
// Copyright 2006 The Closure Library Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS-IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/**
* @fileoverview Additional mathematical functions.
*/
goog.provide('goog.math');
goog.require('goog.array');
goog.require('goog.asserts');
/**
* Returns a random integer greater than or equal to 0 and less than {@code a}.
* @param {number} a The upper bound for the random integer (exclusive).
* @return {number} A random integer N such that 0 <= N < a.
*/
goog.math.randomInt = function(a) {
return Math.floor(Math.random() * a);
};
/**
* Returns a random number greater than or equal to {@code a} and less than
* {@code b}.
* @param {number} a The lower bound for the random number (inclusive).
* @param {number} b The upper bound for the random number (exclusive).
* @return {number} A random number N such that a <= N < b.
*/
goog.math.uniformRandom = function(a, b) {
return a + Math.random() * (b - a);
};
/**
* Takes a number and clamps it to within the provided bounds.
* @param {number} value The input number.
* @param {number} min The minimum value to return.
* @param {number} max The maximum value to return.
* @return {number} The input number if it is within bounds, or the nearest
* number within the bounds.
*/
goog.math.clamp = function(value, min, max) {
return Math.min(Math.max(value, min), max);
};
/**
* The % operator in JavaScript returns the remainder of a / b, but differs from
* some other languages in that the result will have the same sign as the
* dividend. For example, -1 % 8 == -1, whereas in some other languages
* (such as Python) the result would be 7. This function emulates the more
* correct modulo behavior, which is useful for certain applications such as
* calculating an offset index in a circular list.
*
* @param {number} a The dividend.
* @param {number} b The divisor.
* @return {number} a % b where the result is between 0 and b (either 0 <= x < b
* or b < x <= 0, depending on the sign of b).
*/
goog.math.modulo = function(a, b) {
var r = a % b;
// If r and b differ in sign, add b to wrap the result to the correct sign.
return (r * b < 0) ? r + b : r;
};
/**
* Performs linear interpolation between values a and b. Returns the value
* between a and b proportional to x (when x is between 0 and 1. When x is
* outside this range, the return value is a linear extrapolation).
* @param {number} a A number.
* @param {number} b A number.
* @param {number} x The proportion between a and b.
* @return {number} The interpolated value between a and b.
*/
goog.math.lerp = function(a, b, x) {
return a + x * (b - a);
};
/**
* Tests whether the two values are equal to each other, within a certain
* tolerance to adjust for floating point errors.
* @param {number} a A number.
* @param {number} b A number.
* @param {number=} opt_tolerance Optional tolerance range. Defaults
* to 0.000001. If specified, should be greater than 0.
* @return {boolean} Whether {@code a} and {@code b} are nearly equal.
*/
goog.math.nearlyEquals = function(a, b, opt_tolerance) {
return Math.abs(a - b) <= (opt_tolerance || 0.000001);
};
// TODO(user): Rename to normalizeAngle, retaining old name as deprecated
// alias.
/**
* Normalizes an angle to be in range [0-360). Angles outside this range will
* be normalized to be the equivalent angle with that range.
* @param {number} angle Angle in degrees.
* @return {number} Standardized angle.
*/
goog.math.standardAngle = function(angle) {
return goog.math.modulo(angle, 360);
};
/**
* Normalizes an angle to be in range [0-2*PI). Angles outside this range will
* be normalized to be the equivalent angle with that range.
* @param {number} angle Angle in radians.
* @return {number} Standardized angle.
*/
goog.math.standardAngleInRadians = function(angle) {
return goog.math.modulo(angle, 2 * Math.PI);
};
/**
* Converts degrees to radians.
* @param {number} angleDegrees Angle in degrees.
* @return {number} Angle in radians.
*/
goog.math.toRadians = function(angleDegrees) {
return angleDegrees * Math.PI / 180;
};
/**
* Converts radians to degrees.
* @param {number} angleRadians Angle in radians.
* @return {number} Angle in degrees.
*/
goog.math.toDegrees = function(angleRadians) {
return angleRadians * 180 / Math.PI;
};
/**
* For a given angle and radius, finds the X portion of the offset.
* @param {number} degrees Angle in degrees (zero points in +X direction).
* @param {number} radius Radius.
* @return {number} The x-distance for the angle and radius.
*/
goog.math.angleDx = function(degrees, radius) {
return radius * Math.cos(goog.math.toRadians(degrees));
};
/**
* For a given angle and radius, finds the Y portion of the offset.
* @param {number} degrees Angle in degrees (zero points in +X direction).
* @param {number} radius Radius.
* @return {number} The y-distance for the angle and radius.
*/
goog.math.angleDy = function(degrees, radius) {
return radius * Math.sin(goog.math.toRadians(degrees));
};
/**
* Computes the angle between two points (x1,y1) and (x2,y2).
* Angle zero points in the +X direction, 90 degrees points in the +Y
* direction (down) and from there we grow clockwise towards 360 degrees.
* @param {number} x1 x of first point.
* @param {number} y1 y of first point.
* @param {number} x2 x of second point.
* @param {number} y2 y of second point.
* @return {number} Standardized angle in degrees of the vector from
* x1,y1 to x2,y2.
*/
goog.math.angle = function(x1, y1, x2, y2) {
return goog.math.standardAngle(
goog.math.toDegrees(Math.atan2(y2 - y1, x2 - x1)));
};
/**
* Computes the difference between startAngle and endAngle (angles in degrees).
* @param {number} startAngle Start angle in degrees.
* @param {number} endAngle End angle in degrees.
* @return {number} The number of degrees that when added to
* startAngle will result in endAngle. Positive numbers mean that the
* direction is clockwise. Negative numbers indicate a counter-clockwise
* direction.
* The shortest route (clockwise vs counter-clockwise) between the angles
* is used.
* When the difference is 180 degrees, the function returns 180 (not -180)
* angleDifference(30, 40) is 10, and angleDifference(40, 30) is -10.
* angleDifference(350, 10) is 20, and angleDifference(10, 350) is -20.
*/
goog.math.angleDifference = function(startAngle, endAngle) {
var d =
goog.math.standardAngle(endAngle) - goog.math.standardAngle(startAngle);
if (d > 180) {
d = d - 360;
} else if (d <= -180) {
d = 360 + d;
}
return d;
};
/**
* Returns the sign of a number as per the "sign" or "signum" function.
* @param {number} x The number to take the sign of.
* @return {number} -1 when negative, 1 when positive, 0 when 0. Preserves
* signed zeros and NaN.
*/
goog.math.sign = Math.sign || function(x) {
if (x > 0) {
return 1;
}
if (x < 0) {
return -1;
}
return x; // Preserves signed zeros and NaN.
};
/**
* JavaScript implementation of Longest Common Subsequence problem.
* http://en.wikipedia.org/wiki/Longest_common_subsequence
*
* Returns the longest possible array that is subarray of both of given arrays.
*
* @param {IArrayLike<S>} array1 First array of objects.
* @param {IArrayLike<T>} array2 Second array of objects.
* @param {Function=} opt_compareFn Function that acts as a custom comparator
* for the array ojects. Function should return true if objects are equal,
* otherwise false.
* @param {Function=} opt_collectorFn Function used to decide what to return
* as a result subsequence. It accepts 2 arguments: index of common element
* in the first array and index in the second. The default function returns
* element from the first array.
* @return {!Array<S|T>} A list of objects that are common to both arrays
* such that there is no common subsequence with size greater than the
* length of the list.
* @template S,T
*/
goog.math.longestCommonSubsequence = function(
array1, array2, opt_compareFn, opt_collectorFn) {
var compare = opt_compareFn || function(a, b) { return a == b; };
var collect = opt_collectorFn || function(i1, i2) { return array1[i1]; };
var length1 = array1.length;
var length2 = array2.length;
var arr = [];
for (var i = 0; i < length1 + 1; i++) {
arr[i] = [];
arr[i][0] = 0;
}
for (var j = 0; j < length2 + 1; j++) {
arr[0][j] = 0;
}
for (i = 1; i <= length1; i++) {
for (j = 1; j <= length2; j++) {
if (compare(array1[i - 1], array2[j - 1])) {
arr[i][j] = arr[i - 1][j - 1] + 1;
} else {
arr[i][j] = Math.max(arr[i - 1][j], arr[i][j - 1]);
}
}
}
// Backtracking
var result = [];
var i = length1, j = length2;
while (i > 0 && j > 0) {
if (compare(array1[i - 1], array2[j - 1])) {
result.unshift(collect(i - 1, j - 1));
i--;
j--;
} else {
if (arr[i - 1][j] > arr[i][j - 1]) {
i--;
} else {
j--;
}
}
}
return result;
};
/**
* Returns the sum of the arguments.
* @param {...number} var_args Numbers to add.
* @return {number} The sum of the arguments (0 if no arguments were provided,
* {@code NaN} if any of the arguments is not a valid number).
*/
goog.math.sum = function(var_args) {
return /** @type {number} */ (
goog.array.reduce(
arguments, function(sum, value) { return sum + value; }, 0));
};
/**
* Returns the arithmetic mean of the arguments.
* @param {...number} var_args Numbers to average.
* @return {number} The average of the arguments ({@code NaN} if no arguments
* were provided or any of the arguments is not a valid number).
*/
goog.math.average = function(var_args) {
return goog.math.sum.apply(null, arguments) / arguments.length;
};
/**
* Returns the unbiased sample variance of the arguments. For a definition,
* see e.g. http://en.wikipedia.org/wiki/Variance
* @param {...number} var_args Number samples to analyze.
* @return {number} The unbiased sample variance of the arguments (0 if fewer
* than two samples were provided, or {@code NaN} if any of the samples is
* not a valid number).
*/
goog.math.sampleVariance = function(var_args) {
var sampleSize = arguments.length;
if (sampleSize < 2) {
return 0;
}
var mean = goog.math.average.apply(null, arguments);
var variance =
goog.math.sum.apply(null, goog.array.map(arguments, function(val) {
return Math.pow(val - mean, 2);
})) / (sampleSize - 1);
return variance;
};
/**
* Returns the sample standard deviation of the arguments. For a definition of
* sample standard deviation, see e.g.
* http://en.wikipedia.org/wiki/Standard_deviation
* @param {...number} var_args Number samples to analyze.
* @return {number} The sample standard deviation of the arguments (0 if fewer
* than two samples were provided, or {@code NaN} if any of the samples is
* not a valid number).
*/
goog.math.standardDeviation = function(var_args) {
return Math.sqrt(goog.math.sampleVariance.apply(null, arguments));
};
/**
* Returns whether the supplied number represents an integer, i.e. that is has
* no fractional component. No range-checking is performed on the number.
* @param {number} num The number to test.
* @return {boolean} Whether {@code num} is an integer.
*/
goog.math.isInt = function(num) {
return isFinite(num) && num % 1 == 0;
};
/**
* Returns whether the supplied number is finite and not NaN.
* @param {number} num The number to test.
* @return {boolean} Whether {@code num} is a finite number.
*/
goog.math.isFiniteNumber = function(num) {
return isFinite(num) && !isNaN(num);
};
/**
* @param {number} num The number to test.
* @return {boolean} Whether it is negative zero.
*/
goog.math.isNegativeZero = function(num) {
return num == 0 && 1 / num < 0;
};
/**
* Returns the precise value of floor(log10(num)).
* Simpler implementations didn't work because of floating point rounding
* errors. For example
* <ul>
* <li>Math.floor(Math.log(num) / Math.LN10) is off by one for num == 1e+3.
* <li>Math.floor(Math.log(num) * Math.LOG10E) is off by one for num == 1e+15.
* <li>Math.floor(Math.log10(num)) is off by one for num == 1e+15 - 1.
* </ul>
* @param {number} num A floating point number.
* @return {number} Its logarithm to base 10 rounded down to the nearest
* integer if num > 0. -Infinity if num == 0. NaN if num < 0.
*/
goog.math.log10Floor = function(num) {
if (num > 0) {
var x = Math.round(Math.log(num) * Math.LOG10E);
return x - (parseFloat('1e' + x) > num ? 1 : 0);
}
return num == 0 ? -Infinity : NaN;
};
/**
* A tweaked variant of {@code Math.floor} which tolerates if the passed number
* is infinitesimally smaller than the closest integer. It often happens with
* the results of floating point calculations because of the finite precision
* of the intermediate results. For example {@code Math.floor(Math.log(1000) /
* Math.LN10) == 2}, not 3 as one would expect.
* @param {number} num A number.
* @param {number=} opt_epsilon An infinitesimally small positive number, the
* rounding error to tolerate.
* @return {number} The largest integer less than or equal to {@code num}.
*/
goog.math.safeFloor = function(num, opt_epsilon) {
goog.asserts.assert(!goog.isDef(opt_epsilon) || opt_epsilon > 0);
return Math.floor(num + (opt_epsilon || 2e-15));
};
/**
* A tweaked variant of {@code Math.ceil}. See {@code goog.math.safeFloor} for
* details.
* @param {number} num A number.
* @param {number=} opt_epsilon An infinitesimally small positive number, the
* rounding error to tolerate.
* @return {number} The smallest integer greater than or equal to {@code num}.
*/
goog.math.safeCeil = function(num, opt_epsilon) {
goog.asserts.assert(!goog.isDef(opt_epsilon) || opt_epsilon > 0);
return Math.ceil(num - (opt_epsilon || 2e-15));
};

View file

@ -0,0 +1,227 @@
// Copyright 2007 The Closure Library Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS-IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/**
* @fileoverview A utility class for representing two-dimensional sizes.
* @author brenneman@google.com (Shawn Brenneman)
*/
goog.provide('goog.math.Size');
/**
* Class for representing sizes consisting of a width and height. Undefined
* width and height support is deprecated and results in compiler warning.
* @param {number} width Width.
* @param {number} height Height.
* @struct
* @constructor
*/
goog.math.Size = function(width, height) {
/**
* Width
* @type {number}
*/
this.width = width;
/**
* Height
* @type {number}
*/
this.height = height;
};
/**
* Compares sizes for equality.
* @param {goog.math.Size} a A Size.
* @param {goog.math.Size} b A Size.
* @return {boolean} True iff the sizes have equal widths and equal
* heights, or if both are null.
*/
goog.math.Size.equals = function(a, b) {
if (a == b) {
return true;
}
if (!a || !b) {
return false;
}
return a.width == b.width && a.height == b.height;
};
/**
* @return {!goog.math.Size} A new copy of the Size.
*/
goog.math.Size.prototype.clone = function() {
return new goog.math.Size(this.width, this.height);
};
if (goog.DEBUG) {
/**
* Returns a nice string representing size.
* @return {string} In the form (50 x 73).
* @override
*/
goog.math.Size.prototype.toString = function() {
return '(' + this.width + ' x ' + this.height + ')';
};
}
/**
* @return {number} The longer of the two dimensions in the size.
*/
goog.math.Size.prototype.getLongest = function() {
return Math.max(this.width, this.height);
};
/**
* @return {number} The shorter of the two dimensions in the size.
*/
goog.math.Size.prototype.getShortest = function() {
return Math.min(this.width, this.height);
};
/**
* @return {number} The area of the size (width * height).
*/
goog.math.Size.prototype.area = function() {
return this.width * this.height;
};
/**
* @return {number} The perimeter of the size (width + height) * 2.
*/
goog.math.Size.prototype.perimeter = function() {
return (this.width + this.height) * 2;
};
/**
* @return {number} The ratio of the size's width to its height.
*/
goog.math.Size.prototype.aspectRatio = function() {
return this.width / this.height;
};
/**
* @return {boolean} True if the size has zero area, false if both dimensions
* are non-zero numbers.
*/
goog.math.Size.prototype.isEmpty = function() {
return !this.area();
};
/**
* Clamps the width and height parameters upward to integer values.
* @return {!goog.math.Size} This size with ceil'd components.
*/
goog.math.Size.prototype.ceil = function() {
this.width = Math.ceil(this.width);
this.height = Math.ceil(this.height);
return this;
};
/**
* @param {!goog.math.Size} target The target size.
* @return {boolean} True if this Size is the same size or smaller than the
* target size in both dimensions.
*/
goog.math.Size.prototype.fitsInside = function(target) {
return this.width <= target.width && this.height <= target.height;
};
/**
* Clamps the width and height parameters downward to integer values.
* @return {!goog.math.Size} This size with floored components.
*/
goog.math.Size.prototype.floor = function() {
this.width = Math.floor(this.width);
this.height = Math.floor(this.height);
return this;
};
/**
* Rounds the width and height parameters to integer values.
* @return {!goog.math.Size} This size with rounded components.
*/
goog.math.Size.prototype.round = function() {
this.width = Math.round(this.width);
this.height = Math.round(this.height);
return this;
};
/**
* Scales this size by the given scale factors. The width and height are scaled
* by {@code sx} and {@code opt_sy} respectively. If {@code opt_sy} is not
* given, then {@code sx} is used for both the width and height.
* @param {number} sx The scale factor to use for the width.
* @param {number=} opt_sy The scale factor to use for the height.
* @return {!goog.math.Size} This Size object after scaling.
*/
goog.math.Size.prototype.scale = function(sx, opt_sy) {
var sy = goog.isNumber(opt_sy) ? opt_sy : sx;
this.width *= sx;
this.height *= sy;
return this;
};
/**
* Uniformly scales the size to perfectly cover the dimensions of a given size.
* If the size is already larger than the target, it will be scaled down to the
* minimum size at which it still covers the entire target. The original aspect
* ratio will be preserved.
*
* This function assumes that both Sizes contain strictly positive dimensions.
* @param {!goog.math.Size} target The target size.
* @return {!goog.math.Size} This Size object, after optional scaling.
*/
goog.math.Size.prototype.scaleToCover = function(target) {
var s = this.aspectRatio() <= target.aspectRatio() ?
target.width / this.width :
target.height / this.height;
return this.scale(s);
};
/**
* Uniformly scales the size to fit inside the dimensions of a given size. The
* original aspect ratio will be preserved.
*
* This function assumes that both Sizes contain strictly positive dimensions.
* @param {!goog.math.Size} target The target size.
* @return {!goog.math.Size} This Size object, after optional scaling.
*/
goog.math.Size.prototype.scaleToFit = function(target) {
var s = this.aspectRatio() > target.aspectRatio() ?
target.width / this.width :
target.height / this.height;
return this.scale(s);
};