tricycle-mechanical-design/model/Library/NACAAirfoils/files/Naca4.scad

61 lines
2.3 KiB
OpenSCAD

// Naca4.scad - library for parametric airfoils of 4 digit NACA series
// Code: Rudolf Huttary, Berlin
// June 2015
// commercial use prohibited
// general use: for more examples refer to sampler.scad
// naca = naca digits or 3el vector (default = 12 or [0, 0, .12])
// L = chord length [mm] (default= 100)
// N = # sample points (default= 81)
// h = height [mm] (default= 1)
// open = close at the thin end? (default = true)
// two equivalent example calls
// airfoil(naca = 2408, L = 60, N=1001, h = 30, open = false);
// airfoil(naca = [.2, .4, .32], L = 60, N=1001, h = 30, open = false);
module help_Naca4()
{
echo(str("\n\nList of signatures in lib:\n=================\n",
"module help() - displays this help\n",
"module help_Naca() - displays this help\n",
"module help_Naca4() - displays this help\n",
"module airfoil(naca=2412, L = 100, N = 81, h = 1, open = false) - renders airfoil object\n",
"module airfoil(naca=[.2, .4, .12], L = 100, N = 81, h = 1, open = false) - renders airfoil object using percentage for camber, camber distance and thicknes\n",
"function airfoil_data(naca=12, L = 100, N = 81, open = false)\n",
"=================\n"));
}
module help() help_Naca4();
// help();
// this is the object
module airfoil(naca=12, L = 100, N = 81, h = 1, open = false)
{
linear_extrude(height = h)
polygon(points = airfoil_data(naca, L, N, open));
}
// this is the main function providing the airfoil data
function airfoil_data(naca=12, L = 100, N = 81, open = false) =
let(Na = len(naca)!=3?NACA(naca):naca)
let(A = [.2969, -0.126, -.3516, .2843, open?-0.1015:-0.1036])
[for (b=[-180:360/(N):179.99])
let (x = (1-cos(b))/2)
let(yt = sign(b)*Na[2]/.2*(A*[sqrt(x), x, x*x, x*x*x, x*x*x*x]))
Na[0]==0?L*[x, yt]:L*camber(x, yt, Na[0], Na[1], sign(b))];
// helper functions
function NACA(naca) =
let (M = floor(naca/1000))
let (P = floor((naca-M*1000)/100))
[M/100, P/10, floor(naca-M*1000-P*100)/100];
function camber(x, y, M, P, upper) =
let(yc = (x<P)?M/P/P*(2*P*x-x*x): M/(1-P)/(1-P)*(1 - 2*P + 2*P*x -x*x))
let(dy = (x<P)?2*M/P/P*(P-x):2*M/(1-P)/(1-P)*(P-x))
let(th = atan(dy))
[upper ? x - y*sin(th):x + y*sin(th), upper ? yc + y*cos(th):yc - y*cos(th)];